我们报告了一系列适用于检测和克隆翻译控制信号和外源基因 5' 编码序列的质粒载体的构建和使用。在这些质粒中,乳糖操纵子 β-半乳糖苷酶基因 lacZ 的氨基末端的前八个密码子被去除,并在 lacZ 的第八个密码子附近插入独特的 BamHI、EcoRI 和 SmaI (XmaI) 内切酶切割位点。将含有适当调节信号和 5' 编码序列的脱氧核糖核酸片段引入此类 lac 融合质粒导致产生由 β-半乳糖苷酶残基的羧基末端片段和含有外源脱氧核糖核酸序列编码的氨基末端氨基酸的肽片段组成的混合蛋白。这些杂合肽保留了 1,8-半乳糖苷酶的酶活性,并产生了 Lac' 表型。此类杂合蛋白可用于纯化由外源脱氧核糖核酸片段编码的肽序列,以及用于研究特定肽片段的结构和功能。
抽象是一种由仓鼠细胞中肿瘤抑制基因控制的血管生成的分泌抑制剂,与血小板和基质蛋白血小板传播的片段相似。这两种蛋白质在生化上相似,并且在免疫学上进行了交叉反应,并且可以在两个功能测定中互相代替。人类势头细胞蛋白在体内抑制了本体内的新血管形成,并且在体外抑制了内皮细胞的迁移,仓鼠蛋白GPL40也是如此。gpl4o和人血小板传播一样,使平滑肌细胞刺激了表皮生长因子。血小板传播基因已定位在人类铬-15。这些结果证明了泛素粘合剂糖蛋白血小板蛋白的功能,该功能可能在新生血管形成的正常生理下调中很重要。此外,它们增加了血小板传播可能是众多靶标分子之一,肿瘤抑制基因可以抑制肿瘤生长。
已测试至少20 nt。探针可以用3´或5´生物素/Desthiobiotin亲和力组设计,用于链霉亲和素富集(NEB#S1421)。为了获得最佳结果,受保护的DNA:RNA杂交区应为4或5个核苷酸
易于拆卸和可重复使用的粘合剂作为一次性粘合剂的替代品具有吸引力,可减少浪费并促进再利用,回收或什至升级选项。木质素是纸 - 羽状产业的第二大聚合物和副产品,用于设计一种新颖的,高度可调的可逆聚合物粘合剂。采用的方法是利用P-羟基霉素酸在这项工作中使用木质素氧化化合物合成的P-羟基霉素酸结构的α,β-不饱和酯部分的光子响应特性,并使用木质素氧化化合物合成并修饰以可耐可可逆的粘附切换。可逆性是通过紫外线的暴露来实现的,紫外线裂解最初由酯的α,β-不饱和键形成的共价环丁烷环,从而使材料变软并易于分离。可以通过弹性链接以提供重新功能来再次建立原始聚合物结构。引入了实验方法(DOE)方法的设计,以优化重要变量,以实现粘合剂的最佳剪切强度。各种结构方面的效果显示了满足财产要求的结构的高可调节性。可再生资源的聚合物粘合剂的设计策略,以及本工作中描述的结构 - 属性分析机制,可以实施以设计基于生物的新型和可重复使用的粘合剂。
螺旋对象通常在电子或机械微系统中实现,需要精确理解其机械性能。虽然已经深入研究了由圆柱形纤维形成的螺旋,但对螺旋形状的纤维膜的横截面的作用知之甚少。我们通过实验研究了由超薄PMMA丝带制造的微螺旋的力伸展响应。利用新实现的控制螺旋几何形状,量化螺旋螺距的影响,并突出显示了螺旋丝的显着性刺激。两种现象是确定的:从小螺距上的色带扭曲到高螺距上弯曲主导的状态的机械跃迁,以及纯粹的几何影响,特定于螺旋丝带。与先前建立的不可扩展性弹性条的分析模型发现了良好的一致性。
TIPS-VF:具有序列,长度和位置意识的可变长度DNA片段的增强向量表示Marvin I.de los santos logia.co,马尼拉大都会,菲律宾Midelossantos1215@gmail.com摘要,在机器学习过程中准确编码和表示遗传序列的能力对于生物技术的进步至关重要,这对于生物技术的进步至关重要,特别是基因工程和合成生物学。传统的序列编码方法在处理序列变异性,保持阅读框架完整性并保留生物学相关的特征中面临着显着的限制。这项初步研究介绍了TIPS-VF(可变长度片段的翻译器互动预种植者),这是一个简单有效的编码框架,旨在解决代表机器学习遗传序列的一些关键挑战。结果表明,TIPS-VF启用了可变的长度序列表示,该表示可以保留生物学环境,同时确保编码与密码子边界的对齐,从而特别适合模块化遗传结构。TIPS-VF在截断和碎片分析,序列同源性检测,域评估和剪接连接识别方面表现出卓越的性能。与需要固定长度输入的常规方法不同,TIPS-VF动态适应序列长度变化,保留基本特征,例如域相似性和序列基序。此外,TIPS-VF通过将序列嵌入与三个可能的开放式阅读框架统一,改善了开放的阅读框架识别并增强了向量零件和质粒元素的识别。总的来说,TIPS-VF提供了一个强大的,生物学上有意义的编码框架,通过结合序列,长度和位置意识来克服传统序列表示的约束。TIPS-VF编码基础架构可在https://tips.logiacommunications.com上找到。利益冲突:作者宣布没有利益冲突资金资金信息:无
图2:X射线晶体学通过X射线晶体屏幕。(a)TRF1 TRFH单体的卡通表示,其1286 PANDDA事件被叠加为蓝色球体。每个循环数代表pandda配体结合位点。TIN2 TBM结合位点,站点6,以绿色突出显示。(b)19精制和叠加的TRF1 TRFH结构的卡通表示,其命中片段结合在TIN2 TBM结合位点中。(c)与B中相同的结构,但没有结合的片段命中,显示了与片段结合的四个关键残基的相对位置(R102,E106,Q127,R131)。(d)TRF1 TRFH -TIN2 TBM晶体结构(PDB 3BQO)13的卡通表示,其中四个残基与碎片结合在一起,显示为蓝色棒,而TIN2 TBM显示为洋红色棒。(e)TRF1 TRFH的R131与命中片段的酰胺组之间的H-键的示例(3)。(f)命中片段(6)的示例,其中一个halide组埋在TRF1 TRFH的亮氨酸袋中,用TIN2 TBM肽(PDB 3BQO)13叠加为卡通和L260。(g)TRF1 TRFH的R131与命中片段的芳基(13)之间的阳离子-PI相互作用的示例。(H)Xchem的晶体结构命中片段5与TRF1 TRFH结合,相邻的不对称单元以灰色显示。
非同源最终连接(NHEJ)因素在复制叉保护,重新启动和维修中。在这里,我们确定了一种与RNA相关的机制:在裂变酵母中建立NHEJ因子KU介导的障碍物的DNA杂种。rNase H活性促进新生的链降解和复制重新开始,RNase H2在处理RNA中的重要作用:DNA杂种以克服新生链降解的KU级杂种。rNase H2与MRN-CTP1轴合作,以KU的方式维持对复制应激的抗性。从机械上讲,新生链降解中RNAseH2的需求需要培养基活性,该活动允许建立KU级驻射击器exo1,而损害Okazaki碎片的成熟会加强KU驻式甲壳。最后,复制应力以原始酶依赖性方式诱导KU灶,并有利于KU结合与RNA:DNA杂交。我们提出了RNA的功能:DNA杂交源自冈崎片段的DNA杂交,以控制KU驻式核能指定核酸酶的要求,以使分叉切除。
“路径求和”形式主义是一种符号化操作描述量子系统的线性映射的方法,也是用于形式化验证此类系统的工具。我们在此给出了该形式主义的一组新重写规则,并表明它对于“Toffili-Hadamard”是完整的,这是量子力学最简单的近似通用片段。我们表明重写是终止的,但不是汇合的(这是片段普遍性所预期的)。我们使用路径求和和图形语言 ZH-Calculus 之间的联系来实现这一点,并展示了公理化如何转化为后者。最后,我们展示了如何丰富重写系统以达到量子计算二元片段的完整性——通过将具有二元 π 倍数的相位门添加到 Toffili-Hadamard 门集来获得——特别用于量子傅里叶变换。
。cc-by-nc-nd 4.0国际许可证是根据作者/资助者提供的,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审认证)