拓扑,具有良好的扩展特性。消息在网络中的路由由 Tourmalet 芯片完成,并基于 16 位目标节点地址。BSS-2 作为一种混合信号神经形态计算系统,建立在 HICANN-X (HX) 芯片之上,该芯片具有 512 个自适应指数积分和激发 (AdEx) 神经元电路和 512 × 256 = 131 072 个突触 [7]。通过组合神经元电路,每个神经元最多可配置 16 k 个突触输入。实现具有这种神经元的大型网络需要多芯片系统。[1, 3, 10, 12] 最近,BSS-2 系统开发进展到多芯片系统,具有 46 个 HX 芯片,每个芯片通过 8 个 1 Gbit s −1 串行链路连接到 Kintex 7 FPGA。这些系统利用 BSS-1 晶圆模块基础设施,通过将许多芯片放置在与 BSS-1 晶圆完全相同尺寸和引脚配置的大型 PCB 上来模拟全晶圆级实现[13, 15]。我们认为 [16] 中描述的拓扑对于在带宽和网络直径方面互连晶圆模块上的多个 FPGA 是最佳的。图 1 显示了用于测试 BSS-2 EXTOLL 网络的当前实验室设置[7, 14]。它通过连接到 FPGA 的 MGT 端口的 USB 3.0 插头物理连接到 EXTOLL 网络。此外,它仍然连接到以太网网络以用于 FPGA 位文件闪存。该设置包含四个 FPGA 和两个芯片。
摘要 — 量子计算是一项非常有前景的技术,近年来取得了令人瞩目的进展,但目前尚不清楚如何扩展量子计算以满足其最强大应用的需求。尽管量子比特的制造和控制需要不断取得进展,但量子计算的可扩展性也将取决于全面的架构设计,该设计考虑采用分布式多核方法替代传统的单片版本,因此包括通信视角。然而,这不仅仅是引入单纯的互连。相反,它意味着在量子计算机结构中整合完整的通信堆栈。在本文中,我们提出了一种包含量子计算和量子通信的双全栈架构,我们使用这种架构通过结构化设计方法来解决单片与分布式问题。为此,我们重新审视不同的量子计算层,通过强调开放的设计变量和性能指标来捕捉和建模它们的本质。使用现有量子计算机的行为模型和实际测量,模拟结果表明多核架构可以有效释放量子计算机的全部潜力。