(1)(Kokuken)日本科学技术局研究与发展战略中心,“战略建议:每个人的量子计算机”,2018年。 https:// wwwjst.go.jp/crds/pdf/2018/sp/crds-fy2018-sp-04.pdf(2)p.w.Shor,“用于量子计算的算法:离散日志和保理”,Proc第35届IEEE计算机科学序言研讨会,第124-134页,1994年。(3)L.K.Grover,“用于数据库搜索的快速量子机械算法”,第28 ACM计算理论座谈会论文集,第212-219页,1996年。(4)N。Kunihiro,“代理量计算机的计算时间的精确分析”,IEice Trans基础,第88-A卷,第105–111页,2005年。(5)M.A。nielsen和I.L.chuang,量子计算和量子信息,剑桥大学出版社,2000年。(6)A。Peruzzo,J。McClean,P。Shadbolt,M.-H周,P.J。Love,A。Aspuru-Guzik和J.L.O'Brien,“光子量子处理器上的变异特征值求解器”,《自然通信》,第5卷,第1期,2014年7月,第4213页(7)to奥利T.可逆计算,在:de bakker J.,van leeuwen J.(eds)自动机,语言和程序 - iCalp 1980,计算机Sci-Ence中的讲义,第85卷,Springer,柏林(8)Arxiv e-Prints,Quant-PH/9902 062,1999年2月。(9)K。Iwama,S。Yamashita和Y. Kambayashi,“设计基于CNOT的量子CUITS的跨形成规则”,设计自动化会议,第419-429-2002页,2002年。(10)Z. Sasanian和D.M.(12)M。Soeken,M。Roetteler,N。Wiebe和G.D. Micheli,“基于LUT的层次可逆逻辑Synthe-Sis”,IEEE TransMiller,“可逆和Quan-Tum电路优化:一种功能性方法”,《可使用的计算》第4个国际研讨会(RC 2012),第112-124页,2013年。((11)A。Mishchenko和M. Perkowski,“快速的启发式启发式最小化 - 独家及产品或产品”,第五届国际式Reed-Muller Workshop,pp.242–250,2001。计算。集成。电路系统,第38卷,第9期,第1675–1688页,2019年。((13)E。Souma和S. Yamashita,“同时分解许多MPMCT大门时,减少T计数”,第50届国际多重逻辑国际研讨会(IS- MVL 2020),第22-22-27页,11月2020年,((14)X. Zhou,D.W。 Leung和I.L.Chuang,“量子逻辑门结构的方法论”,物理。 修订版 A,第62卷,052316,2000年10月。 ((15)A。Barenco,C.H。 Bennett,R。Cleve,D.P。 Divincenzo,Chuang,“量子逻辑门结构的方法论”,物理。修订版A,第62卷,052316,2000年10月。((15)A。Barenco,C.H。Bennett,R。Cleve,D.P。 Divincenzo,Bennett,R。Cleve,D.P。Divincenzo,
摘要:牙周缺陷在牙科中提出了重大挑战,需要创新的解决方案以进行全面再生。传统的恢复方法在实现完整且功能性的牙周组织重建方面具有固有的限制。组织工程,一种多学科方法,整合细胞,生物材料和生物活性因素,在应对这一挑战方面具有巨大的希望。组织工程策略的中心是支架,在支持细胞行为和编排组织再生方面关键。自然和合成材料已经进行了广泛的探索,每种材料在生物相容性和可调特性方面都具有独特的优势。生长因子和干细胞的整合进一步扩大了再生潜力,从而有助于增强组织愈合和功能恢复。尽管取得了重大进展,但挑战仍然存在。实现了再生组织的无缝整合,建立适当的血管形成并发展一个忠实地复制自然周期环境的仿生支架正在进行中。跨不同科学学科的合作努力对于克服这些障碍至关重要。这项全面的审查强调了牙周再生组织工程策略持续研发的关键需求。通过应对当前的挑战并促进跨学科的合作,我们可以解开全部再生潜力,从而为Pe-riodtontal Care的变革性进步铺平了道路。这项研究不仅增强了我们对牙周组织的理解,还提供了可以彻底改变牙齿疗法,改善患者预后并重塑牙周治疗的未来的创新方法。
Carmine Capacchione, [A] [e] Fabia Grisi, [A] [e] Marina Lamberti, [A] [e] Mina Mazzeo, [A] [e] Barbara Milani, [B] [e] Stefano Milione, [e] Daniela Pappalardo, [c] [e] Cristiano Zuccaccia [D] [e] and Claudio pellecchia* [a]
C-130 大力神是世界上使用最广泛的战术运输机。C-130 因其几乎可以在任何地方降落的能力而备受赞誉,每天为陆军、空军和海军陆战队运送部队、装备和补给数百次。它还由 60 多个国家运营,包括大多数美国盟友。自首次亮相以来的五十年里,大力神已经适应了广泛的军事和民用任务。它的军事角色包括战术空运、受伤部队的医疗后送、其他飞机的空中加油、针对恐怖分子和叛乱分子的特别行动、地面部队的空中火力支援、干扰敌方通信、战斗救援和人道主义援助。民事任务包括气象侦察、救灾、执法、消防、支持科学研究和救援受困海员。
通常称为5CB,4-甲氧-4'-戊苯基是具有化学式C18H19N的列液晶体。它首先由乔治·威廉·格雷(George William Gray),肯·哈里森(Ken Harrison)和J.A.合成。纳什(Div> Nash)于1972年在赫尔大学(University of Hull),当时是氰基苯基的第一位成员。[1] [2] 5CB分子在22.5°C下从晶体到列相的相变长20Å,并在35.0°C下从列中到同性恋态。尽管由于其低过渡温度向各向同性及其狭窄的列相范围而不适合LCD,但它仍然是基础研究中最常用的列表之一。这是阳性介电各向异性材料的参考材料之一,并且可用的物理数据量最多。碳纳米管是由滚动石墨烯片制成的管状结构。作为许多纳米颗粒,对它们进行了研究,以便在其他材料中使用和插入以改善其电气[3-5]或生物学[6]特性,但也作为光电和磁化器件中高级材料的掺杂剂[7-12]。,为了适当使用,必须将它们作为单个颗粒作为单个颗粒进行研究,而不是像它们表现出完全不同的行为的大部分。许多
C-130 大力神运输机是世界上使用最广泛的战术运输机。C-130 因其几乎可以在任何地方降落的能力而备受赞誉,每天为陆军、空军和海军陆战队运送部队、装备和补给数百次。其他 60 多个国家也使用该运输机,其中包括大多数美国盟友。自首次亮相以来的 50 年里,大力神运输机已被改编为广泛的军事和民事任务。它的军事角色包括战术空运、伤员医疗后送、其他飞机的空中加油、针对恐怖分子和叛乱分子的特别行动、地面部队的空中火力支援、干扰敌方通信、战斗救援和人道主义援助。民事任务包括气象侦察、救灾、执法、消防、支持科学研究和救援受困海员。
C-130 大力神运输机是世界上使用最广泛的战术运输机。C-130 因其几乎可以在任何地方降落的能力而备受赞誉,每天为陆军、空军和海军陆战队运送部队、装备和补给数百次。其他 60 多个国家也使用该运输机,其中包括大多数美国盟友。自首次亮相以来的 50 年里,大力神运输机已被改编为广泛的军事和民事任务。它的军事角色包括战术空运、伤员医疗后送、其他飞机的空中加油、针对恐怖分子和叛乱分子的特别行动、地面部队的空中火力支援、干扰敌方通信、战斗救援和人道主义援助。民事任务包括气象侦察、救灾、执法、消防、支持科学研究和救援受困海员。