摘要。多模光学干涉仪代表了成功实施几种利用光学处理的量子信息方案的最可行的平台。示例范围从量子通信和传感到计算,包括光学神经网络,光储层计算或复杂物理系统的模拟。实现此类例程需要高水平的控制和可调性,以定义设备执行的操作的参数。鉴于综合光子技术的最新技术改进,这一要求变得尤为重要,这使得能够逐渐嵌入相当大的可调参数的更大的电路实施。我们制定了有效的程序,以表征光电在物理实验中通常发生的缺陷,例如输入和输出收集阶段中的不平衡损耗和相位不稳定性。该算法旨在重建代表光学干涉仪的转移矩阵,而无需对其内部结构和编码做出任何强烈的假设。我们在实验相关的方案中显示了这种方法的生存能力,该方案由可调的集成光子电路定义,我们证明了我们方法的有效性和鲁棒性。我们的发现可以基于批量和集成配置在各种光学设置中找到应用程序。
摘要:牙周缺陷在牙科中提出了重大挑战,需要创新的解决方案以进行全面再生。传统的恢复方法在实现完整且功能性的牙周组织重建方面具有固有的限制。组织工程,一种多学科方法,整合细胞,生物材料和生物活性因素,在应对这一挑战方面具有巨大的希望。组织工程策略的中心是支架,在支持细胞行为和编排组织再生方面关键。自然和合成材料已经进行了广泛的探索,每种材料在生物相容性和可调特性方面都具有独特的优势。生长因子和干细胞的整合进一步扩大了再生潜力,从而有助于增强组织愈合和功能恢复。尽管取得了重大进展,但挑战仍然存在。实现了再生组织的无缝整合,建立适当的血管形成并发展一个忠实地复制自然周期环境的仿生支架正在进行中。跨不同科学学科的合作努力对于克服这些障碍至关重要。这项全面的审查强调了牙周再生组织工程策略持续研发的关键需求。通过应对当前的挑战并促进跨学科的合作,我们可以解开全部再生潜力,从而为Pe-riodtontal Care的变革性进步铺平了道路。这项研究不仅增强了我们对牙周组织的理解,还提供了可以彻底改变牙齿疗法,改善患者预后并重塑牙周治疗的未来的创新方法。
Carmine Capacchione, [A] [e] Fabia Grisi, [A] [e] Marina Lamberti, [A] [e] Mina Mazzeo, [A] [e] Barbara Milani, [B] [e] Stefano Milione, [e] Daniela Pappalardo, [c] [e] Cristiano Zuccaccia [D] [e] and Claudio pellecchia* [a]
4.4 书籍.............................................................................................................................................. - 13 -
EngagedScholarship@CSU 为您提供免费开放的本论文。EngagedScholarship@CSU 的授权管理员已接受本论文并将其收录到 ETD 档案中。如需了解更多信息,请联系 library.es@csuohio.edu 。
