摘要:遥控飞机系统 (RPAS) 平台能够优化获取航空图像的过程,并提高所生成产品的空间和时间分辨率质量。值得注意的是,RPAS 平台在林业中的使用呈指数级增长,尤其是自 2010 年以来。在这篇评论中,我们通过系统综述介绍了 RPAS 技术在林业中的开发和应用的全球最新进展。我们的研究结果表明,与固定翼平台相比,多旋翼 RPAS 平台的使用趋势更为明显,并且在可见光谱范围内注册的传感器仍然是最广泛的使用。最近的研究表明,应用特别适用于森林资源清查等领域,其中许多创新都基于对单棵树的检测。还特别关注了用于绘制病虫害地图和短间隔发生的物候现象的新替代方案,以及对火灾和收获后区域的监测。因此,RPAS 平台在广泛的森林应用中具有巨大潜力,无论是与生产部门还是与生物多样性保护相关,时空森林监测都取得了巨大进步,并有望在未来几年取得进一步进展。
摘要。印度尼西亚生物多样性丰富,以其药用植物多样性而闻名,这种多样性既独特又全球丰富。由于其次生代谢产物对各种疾病的功效,药用植物具有商业价值,对人类非常有用。次生代谢产物可确保植物免受非生物和生物压力的影响,并有助于授粉和果实分布。然而,气候变化、森林砍伐、人口增长、过度采伐和不可持续的药用植物贸易方式可能会导致许多种群灭绝。该研究旨在回顾气候变化对印度尼西亚药用植物的一些影响,这些药用植物是发现和人类发展的潜在药物来源。通过重点回顾每个单个因素如何影响植物的生长、发育和次生代谢产物的产生。本综述说明了影响印度尼西亚药用植物的环境因素(如温度、干旱和二氧化碳)的共同特征。显然,气候变化对现有资源的生命周期、药用植物的质量和产量、栖息地破碎化、分布范围的转移、物候模式的变化等产生了不利影响。与其他经济作物相比,药用植物对气候变化的研究很少且有限。该研究建议使用一些不同的适应性技术来缓解气候挑战并保护药用植物。
当前,农业既受到提高生产力的压力,也受到植物病虫害带来的压力。植物病虫害会影响多种作物,导致产量大幅下降。在寻求新的害虫防治措施的过程中,IPM 策略作为一种整体害虫管理方案,迄今为止得到了最多的关注。IPM 计划的基本组成部分是监测田地以确定是否存在害虫问题,从而证明采取防治措施是合理的。传统的田间害虫监测既耗时又不经济,而且人为错误很多。此外,传统 IPM 的应用存在缺陷,因为它缺乏足够的智能来有效地管理害虫。这种不足的智能导致对田地进行一刀切和统一的处理。使用空间技术的监测系统将具有成本效益,并且可以使用“特定地点”的 IPM 方法在需要的时间和地点用农药处理田地。田地的光谱反射会随着物候(生长)阶段、类型和作物健康状况的变化而变化,因此可以通过多光谱传感器进行测量和监测。本文重点介绍了害虫综合治理中农药的合理使用、传统害虫综合治理的弱点、可纳入害虫综合治理的空间技术组成部分以及将空间技术纳入害虫综合治理的好处。
工作任务的描述3.1.1基于传感器,地理空间和数字作物,土壤,水和结构监测和建模(M1-M36)任务负责人:CNR [Mirco Boschetti&Piero Toscano];涉及的合作伙伴:Unibo,Uniba,Unimi,Unina,Polimi,unipg,unipr,cnh,ibf,Tel-tel-on-on-on-on-on-on-on-On-on-On-on-ocximal和遥控传感器将在选定的现场条件下进行开发和测试,以评估和验证其性能。基于传感器的方法将由地理空间技术,地理学,地理上加工和数字模型集成和驱动。图像分析和人造视力预计将被广泛采用,以提供有关关键信息元素的数据,例如作物物候,种子成熟度,蔬菜生长和水果大小。这项工作不仅将集中在生产投入上,例如土壤使用,水和肥料的应用和监测,而且还集中在作物质量和数量参数上。将开发对管理输入的作物反应模型,以提供实时管理解决方案,以实现高效且优化的输入校准,以构建农作物的多层“数字双胞胎”(以及相关的基础架构(例如灌溉系统,结构和设施),嵌入了各种农业系统所需的所有相关信息。为新的智能结构和植物的设计和优化控制以及现有农场设施的脱碳和改造的能源监测和建模也将被应用。
气候变化对全球生物多样性的升级影响构成了我们这个时代最紧迫的环境精神挑战之一。这项研究采用全球调查来收集各种生物学家和生态学家的经验证据,旨在确认在基础研究中理论上的气候变化对生物多样性的预测影响。在帕尔玛干酪和Yohe [1]和Root等人的开创性工作上建立。[2]记录了对气候变化的生物反应的早期证据,我们的研究试图通过积极从事该领域的专业人员的当代观察来验证这些发现。这项调查向全球500多名专家致敬,重点是收集有关物种分布的变化,物候事件的改变以及生态系统障碍频率增加的数据。我们的分析采用先进的统计技术来将这些观察结果与历史气候数据相关联,从而研究气候变化对生物多样性的直接和间接影响。这项研究的结果证实了气候变化与各种形式的生物多样性破坏之间的明显相关性,这与Walther等人的预言相呼应。(2002)关于物种分布的北方和向上变化。此外,维瑟(Visser)和[3]详细介绍了生殖事件的时机的变化,以及诸如野火和害虫爆发等障碍,支持自然系统中气候驱动的扰动的假设。
本研究的重点是比较应用于中高空间分辨率传感器的数据融合方法。应用了两种已记录的方法,即空间和时间自适应反射融合模型 (STARFM) 和基于解混的方法,该方法提出了一种贝叶斯公式来整合先前的光谱信息。此外,两种算法的优势结合在一种新颖的数据融合方法中:空间和时间反射解混模型 (STRUM)。使用模拟图像和 Landsat 和 MODIS 图像展示了每种方法的潜力。算法的理论基础使 STARFM 和 STRUM 产生类似 Landsat 的反射,同时保留 Landsat 图像中的空间模式,而基于解混的方法产生类似 MODIS 的反射。还使用时间 NDVI 配置文件评估了融合图像捕捉物候变化的能力。 STARFM NDVI 的时间剖面与 Landsat NDVI 剖面非常相似。然而,在模拟输入高分辨率图像很少的情况的实验中,基于分离的方法和 STRUM 可以更准确地重建 NDVI 轨迹。STRUM 性能最佳,因为它产生的表面反射与参考 Landsat 图像的相关性最高。这项研究的结果表明,STRUM 更适合需要类似 Landsat 表面反射的数据融合应用,例如间隙文件
在化石燃料市场价格上涨的时代,为了满足气候变化日益严重的环境和经济问题,可再生能源必须在全球能源供应中发挥重要作用。本文重点介绍一种利用机载激光雷达数据全自动评估屋顶平面太阳能潜力的新方法,并使用完整的 3D 信息进行屋顶平面检测和太阳能潜力分析。基于图像的候选区域检测算法减少了点云的数据量,并识别出包含建筑物的潜在区域,完整性较高(97%)。从建筑物候选区域中提取三维屋顶平面,并计算其方位和坡度。在 3D 点云内计算每个屋顶平面的地平线,从而以适当的方式尊重附近物体(如植被、屋顶、烟囱、天窗等)的阴影效果。与墙壁或建筑物等其他物体相比,植被具有透明特性。因此,下一步是在剩余的非屋顶点内检测植被,并通过计算每个树段平均的局部透明度测量值来引入透明阴影值。对规则分布的屋顶点进行以下太阳能潜力分析,结果包括:(i) 每个屋顶平面的直接辐射和散射辐射的年总和,以及 (ii) 有关一个屋顶内辐射分布的详细信息。通过计算晴空指数,使用来自附近气象地面站的数据考虑云量效应。
摘要本研究论文介绍了不断变化的气候模式与其对自然植被的深远影响之间的复杂关系。随着气候变化的出现,作为全球关注的关注,必须了解对生态系统和生物多样性的影响。改变气候模式会导致温度波动的变化,降水模式改变和干旱压力,极端天气事件的变化,雪包,风次事件,冰暴,海平面上升,热带气旋等。根据“印度地区气候变化的评估 - 地球科学部印度政府的一份报告” _ _ _ _在30年(1986年至2015年)的温度最温暖的一天,一年中最冷的夜晚的温度已上升为0。63度厘米和0。分别为4度。这种变化会导致土壤侵蚀,养分沉积,污染物和病原体的扩散,洪水等的风险。所有这些对生物多样性和生态系统服务,自然植被的语音变化(Forest Flora)e都有强烈的影响。 g。在叶子物候(芽中断,叶片成熟,叶片等)中这会导致对森林及其生态系统的总体影响。的影响是植物面临着不确定的未来。本文旨在更好地理解气候变化与世界自然植被之间的复杂动态。关键词:自然植被,降水模式,物候,极端天气。引言地球的气候正经历着由于人类活动而发生的前所未有的变化,主要是温室气体的排放。对印度地区地球科学部(MOES)准备的气候变化的报告评估警告说,在1901 - 2018年期间,由于温室气体排放而导致的1901 - 2018年期间,印度的平均温度已经在0.7度左右升高,到2100年底,预计到1976 - 2005年的平均情况,预计将增加4.4级的情况。对生态系统的后果,自然植被特别脆弱。 全球气候是植被模式的最重要的决定因素之一,对森林的分布,结构和生态具有重大影响(Kirschbaum等,1996)。 全球气候变化与土地利用/土地覆盖变化有很大相关(LULCC)(Bonan,2008; Halder et al。,2016)。几位研究人员的Climate-degatimate-degetation研究表明,气候制度决定了任何地区的特定植物社区或功能类型(Walter,1985)。 本研究论文的目的是系统地探索和记录变化气候对自然植被的多方面影响。对印度地区地球科学部(MOES)准备的气候变化的报告评估警告说,在1901 - 2018年期间,由于温室气体排放而导致的1901 - 2018年期间,印度的平均温度已经在0.7度左右升高,到2100年底,预计到1976 - 2005年的平均情况,预计将增加4.4级的情况。对生态系统的后果,自然植被特别脆弱。全球气候是植被模式的最重要的决定因素之一,对森林的分布,结构和生态具有重大影响(Kirschbaum等,1996)。全球气候变化与土地利用/土地覆盖变化有很大相关(LULCC)(Bonan,2008; Halder et al。,2016)。几位研究人员的Climate-degatimate-degetation研究表明,气候制度决定了任何地区的特定植物社区或功能类型(Walter,1985)。本研究论文的目的是系统地探索和记录变化气候对自然植被的多方面影响。
摘要:北孟加拉北部,从特莱草原到温带的喜马拉雅山脉,由于气候变化而面临严重的生物多样性挑战。本文评估了气候变化如何影响该地区的动植物,强调由温度转移,降水模式改变和冰川熔体引起的干扰。升高的温度已改变了植物候位,改变了开花和成果时期,这会影响植物的繁殖和生存。对于野生动植物,这些温度变化破坏了繁殖和冬眠模式,威胁着像红熊猫等物种。变化的降水模式导致了不可预测的水利用性,影响了对两栖动物和水禽至关重要的湿地,并影响了当地的农业和食品供应。在喜马拉雅山脉东部的冰川撤退,通过影响河流系统并减少进入北孟加拉的水流,从而使情况更加复杂。这会影响水生栖息地和物种,熔化冰川破坏了水生生态系统和鱼类种群的沉积增加。在自然和人类活动的驱动下,栖息地丧失和破碎化,威胁着依赖大型,连续栖息地的物种。气候变化通过促进击败本地动植物和动物群的入侵物种的传播来加剧这些威胁。物种正在转移范围,通常转移到更高的高度或改变其分布,可能导致生态失衡。这些变化显着影响生态系统服务,例如授粉,水调节和土壤肥力,进而影响农业和自然栖息地。由于动物迁移而引起的人类野生动植物冲突的兴起使保护工作变得复杂,并可能导致对野生动植物的报复行动。
Quercus属(Oaks)是Fagaceae家族中生物多样性最多的属,其中包括分布在北半球的400多种。橡树种类与松树一起在森林生态系统中起着至关重要的作用,因为它们是最大的树木生物量,并支持中纬度森林中最大的物种多样性[1]。与其他属不同,例如带有上述的Pinus或密切相关的岩石果,Oaks在形态学,解剖学,物候,生理和生态和生态特征和策略中显示出显着的差异。这种异质性使橡树物种能够在该属的巨大分布范围内占据广泛的不同气候和环境[2]。橡木物种的确切数量仍然不确定,并且可能无限期地保持如此无限。难度在于这些物种形态特征的显着可塑性,以及物种之间的杂交和渗入。尽管如此,几位与该属的作者最近解决了非同叶进化枝内的许多关系 - 通过应用分子数据,经过了广泛的重新分类[3-8]。因此,在对亚属进化枝的最后一次重大修订[5]之后,Quercus属已分为两个亚属:近代的塞里斯(旧世界橡树)和果酱(新世界橡木),以及八个部分:cyclobalanopsis,ilex和cerris suberius cerris and cerranus subnus and loctae and oft unt obbate and oft unt obbate untib andob insob insob insob,亚凝胶Quercus(图1)。除了教派外,目前严格存在于世界各地的每个部分。Quercus,具有霍拉克斯分布和两个分离的种类。Ponticae。尽管2017年之前的研究正在考虑对各节或子属的一些不同概念,但我们将在本综述中提到当前的概念。两个子属的起源都被认为位于各自的地区,旧世界[8]和