数字双胞胎已成为工程系统连续监视和故障检测的宝贵工具。但是,人类数字双胞胎(HDT)的采用落后于其他类型的数字双胞胎,这在很大程度上是由于缺乏可用的工具来准确的人类数字模型。计算生物学领域具有人类解剖学,生物力学和生理学数字模型的发达生态系统,可以利用HDT系统的创建。这项工作的目的是评估现有的计算工具,以评估其在HDT系统中掺入的可行性。已经开发了一种概念证明的HDT系统,该系统结合了医学成像,模拟生物力学和生理学,可扩展的传感器集成框架以及可视化和任务计划的交互式软件应用程序的内部解剖结构。已经开发了针对物理驱动的生物力学模拟的新技术,并且在模拟的生物力学和生理学之间建立了联系,以提供人体的整体代表。尽管仍然存在技术障碍,但这种HDTS的方法显示出持续监测和伤害检测,降低风险和个性化任务计划的希望。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 10 月 26 日发布。;https://doi.org/10.1101/2024.09.05.611289 doi:bioRxiv 预印本
抽象的非侵入性皮肤表征设备正在成为临床皮肤研究中的宝贵工具。近年来,用于确定皮肤生物力学特性的可用实验技术和方法的范围已大大增加。尽管大量工作专门用于评估宏观皮肤表征设备的工作原理,但仍缺乏合理化和比较。这是促使本研究的促进,该研究旨在表征和比较三种常用的工作原理:吸力,动态剪切负荷和凹痕。使用可调机械性能的合成模型系统评估三个设备,并根据相应的有限元模型合理化了结果。对健康志愿者进行了体内测量,以研究区分不同身体位置皮肤的生物力学特性的能力,并评估每个设备的内部和评估者间可靠性。目前的比较分析表明,被分析的功能原理对人皮肤的僵硬感不同,这与解释各自测量结果的含义相关。
摘要神经丝(NFS)是多基因的,神经元特异性的中间细丝,该细丝由直径10 nm的细丝“核心”组成,周围是一层长的内在无序蛋白(IDP)“尾巴”。 NF被认为可以调节发育过程中的轴突能力,然后稳定成熟的轴突,而NF亚基的不利性,突变和Ag gregation在多种神经系统疾病中显着。该领域对NF结构,力学和功能的理解已被多种生物化学,细胞生物学和小鼠遗传研究深入了解了四十年以上。这些研究为我们对轴突生理学和疾病中NF功能的集体理解做出了很大的贡献。近年来,在两个新的情况下,人们对NF亚基蛋白引起了人们的兴趣:作为神经元损伤的潜在血液和脑脊液的生物标记,以及具有吸引人特性的模型IDP。在这里,我们回顾了NF结构和功能方面的既定原则和最新发现。在Pos sible的地方,我们将这些发现放在NF组装,相互作用和对轴突力学的贡献的背景下。
沿进化量表相对有选择地移动纤维的能力增加了。,即使在人类中,当一个数字移动时,其他数字也会移动。意想不到的数字运动的部分原因是手的生物力学及其肌肉的生物力学,部分原因是控制纤维的神经系统。这些神经系统每个都包含许多单个神经元,这些神经元的输出在多个肌肉的脊髓运动神经元库中有差异。由于这些因素会导致运动的运动,因此动力学家移动任何给定的数字的收缩伴随着其他肌肉的收缩,以稳定其他数字和手腕。主要运动皮层(M1)主导着对人类自愿运动的控制,与其他支付的系统一起起作用,以雕刻激动剂,拮抗剂和稳定肌肉的协调作用。在任何手机运动中,神经活动都分布在宽的M1领域,该区域与其他纤维运动过程中的区域广泛重叠。因此,皮质病变永远不会损害仅一位数字的功能。M1或皮质脊髓道的病变损害相对选择性或“个性化”的延伸纤维运动,而不是浮雕。单独的机制可能是强度与个性化的基本恢复。
他的研究调查了在全身运动过程中加载在肌肉骨骼系统中的作用,并成功治疗骨科病理。他获得了学士学位克莱姆森大学和M.S.和Ph.D.来自威斯康星大学麦迪逊分校机械工程。他曾是斯坦福大学康复研究中心的访问学者和比利时的Katholieke Universiteit(KU)Leuven的人类运动生物力学实验室。在加入SPRI之前,Smith博士是瑞士Eth Zurich运动生物力学实验室的研究员,在那里他领导了两个研究团队,专注于膝盖载荷的计算模拟和开发植入式传感器以测量肌腱株。
鸟类和鳄鱼人是Archosauria(统治爬行动物)的剩余成员,它们在姿势和步态方面表现出重大差异,就运动策略而言,它们是极地对立的。他们更广泛的谱系(Avemetataria and Pseudosuchia)在三叠纪和侏罗纪期间演变了多种运动模式,包括几种双皮亚主义的发生。Archosaurs中两性起源的确切时机和频率,因此它们的祖先能力是有争议的。经常有人建议,祖先在祖先表现出某种形式的两种形式。euparkeria capensis由于其系统发育位置和中间骨骼形态,是对弓形虫运动进行研究的中心分类单元,并被认为代表了这一组的兼性双皮亚主义。但是,迄今为止,尚无生物力学测试是否在eupakeria中可行。在这里,我们在其后肢中使用肌肉骨骼模型和静态模拟来测试身体姿势和肌肉参数估计方法对运动电位的影响。我们的分析表明,质量中心周围产生的负倾斜力矩对可持续性双皮性均过敏。我们得出的结论是,Euparkeria不太可能是双足动的,而且可能是四足动物,因此不太可能在Archosauria的祖先双皮亚能力推断出。
目的:评估相关的材料特性(弯曲强度[σF],弹性模型[E],吸水[WSP]和溶解度[WSL]和生物相容性(AM)聚合物(AM)聚合物与热量丙烯酸(AR; Contrance)进行完整材料的材料的临时性作用,该材料的生产均可在制造临时,该材料的临时性是由此进行了临时。材料和方法:根据ISO 20795-1:2013标准评估σF,E,WSP和WSL,并使用MTT和SRB分析评估了生物相容性。磁盘形样品被制造并用于WSP(n = 5),WSL(n = 5)和生物相容性(n = 3)测试。用于评估σF和E的条形样品(n = 30),并在37°C蒸馏水中储存48小时或6个月,然后在通用测试机中弯曲频率(5±1 mm/分钟)。使用学生t检验(α= .05)对σF,E,WSP,WSL和生物相容性测试进行了统计分析。Weibull分析也用于σF和E数据。结果:发现了两种材料之间的显着差异。储能持续6个月不会影响AM聚合物的弯曲强度,但是该材料显示出不足的σF和WSL值。结论:尽管储水6个月后,尽管有足够的生物相容性和强度稳定性,但建议用于完整牙齿的AM聚合物需要进一步开发,以改善本研究中评估的材料特性。Int J ProShodont 2024; 37(Suppl):S109 – S117。做:10.11607/ijp.8295
非CGPA:学生可以通过选择非CGPA强制性学分课程,例如能力增强课程,技能增强课程和III中入伍的课外活动。在非CGPA课程中得分的分数将不会在总体百分比计算中考虑。4。课程重量
有助于脚踝植物的外骨骼可以改善运动的能源经济。表征这些减少能源成本背后的联合级别机制可以使人们更好地了解人们如何与这些设备互动,并改善设备设计和培训协议。我们检查了对经过延长协议训练的外骨骼使用者中对外骨骼辅助的生物力学反应。在未辅助关节处的运动学通常没有辅助不变,这在其他踝部外骨骼研究中已经观察到。峰值plotharflexion角的峰值随着植物的援助而增加,尽管生物关节扭矩和全身净代谢能量成本降低,但仍会增加总和生物机械能力。脚踝plantarflexor活性也随着辅助而减少。对无助的关节作用的肌肉也增加了大量援助的活动,并应长期使用以防止过度损害进行调查。