参考文献 1 Mito R 等人。Pathol Int。2020;70(5):287-294。 2 Shvartsur A 等人。Genes & Cancer。2015 年 3 月;6(3-4): 84-105。 3 Shimizu T 等人。J Clin Oncol 2023;41:4678-87。 4 Heist RS 等人。J Clin Oncol。2017;35:2790-7。 5 世界卫生组织。全球癌症观察站:肺癌。访问日期:2024 年 9 月。 6 Cancer.net。肺癌 - 非小细胞:统计数据。访问日期:2024 年 9 月。 7 美国国家癌症研究所。SEER 癌症统计数据说明书:肺癌和支气管癌。访问日期:2024 年 9 月。 8 Chen R 等人。J Hematol Oncol。 2020:13(1):58。9 Majeed U 等人。J Hematol Oncol。2021;14(1):108。10 Pircher A 等人。抗癌研究。2020;70(5):287-294。11 Rodríguez-Abreau D 等人。Ann Onc。2021 年 7 月;32(7):881-895。12 美国癌症协会。非小细胞肺癌的靶向药物治疗。2024 年 9 月访问。
CD3,分化3群; CRS,细胞因子释放综合征; DLL3,类似三角洲的配体3; DLT,剂量限制毒性; EPNEC,肺外神经内分泌癌; IgG,免疫球蛋白G; LCNEC-L,肺的大细胞神经内分泌癌; MTD,最大耐受剂量; PD-1,程序性细胞死亡蛋白1; PD-L1,程序性细胞死亡配体1; SCLC,小细胞肺癌
JRC137607 EUR 31987 EN PDF ISBN 978-92-68-18730-2 ISSN 1831-9424 doi:10.2760/890142 KJ-NA-31-987-EN-N 卢森堡:欧盟出版局,2024 © 欧盟,2024 欧盟文件再利用政策由欧盟委员会 2011 年 12 月 12 日关于再利用委员会文件的决定 2011/833/EU 实施(OJ L 330,2011 年 12 月 14 日,第 39 页)。除非另有说明,否则本文件的再利用均根据 Creative Commons Attribution 4.0 International (CC BY 4.0) 许可证授权(https://creativecommons.org/licenses/by/4.0/)。这意味着,只要给予适当的认可并注明任何更改,就可以重复使用。对于任何不属于欧盟的照片或其他材料的使用或复制,必须直接向版权持有人寻求许可。- 封面插图,© Ktsdesign
聚合物血管生物可吸收支架 (BRS) 已广泛用于治疗冠状动脉疾病。而增材制造 (AM) 正在通过实现具有高度复杂结构的患者专用支架来改变医疗保健领域的格局。然而,使用聚合物 BRS 存在挑战,特别是支架内再狭窄 (ISR),与其较差的机械性能有关。因此,本综述的目的是概述在开发旨在满足机械和生物要求的聚合物 BRS 方面的最新进展。首先,重点介绍并简要描述了适用于 BRS 的生物聚合物以及形状记忆聚合物 (SMP)。其次,除了引入有效的机械超材料(例如负泊松比 (NPR) 结构)之外,还讨论了不同类型的血管支架设计结构。随后,讨论了目前用于制造聚合物 BRS 的 AM 方法,并将其与传统制造方法进行了比较。最后,针对实现新一代 AM BRS 所面临的现有挑战,提出了未来的研究方向。总体而言,本文为未来的心血管应用提供了基准,尤其是通过选择合适的聚合物、设计和 AM 技术来获得临床上可行的聚合物血管支架。
BI 1831169和BI 1821736(VSV-GP肿瘤病毒)经过设计,可诱导易于I型IFN的肿瘤中的细胞死亡,并可能刺激免疫细胞募集到肿瘤中(将“冷”肿瘤转化为“热”肿瘤)。1–4如果肿瘤细胞死亡通过术语发生,则释放肿瘤细胞特异性抗原,与先天免疫激活一起诱导抗肿瘤活性。此外,BI 1831169和BI 1821736(VSV-GP溶血病毒)不整合到人类基因组中。2,5
亚利桑那大学正在开展一项大规模植物标本馆 X 射线荧光 (XRF) 扫描项目,该项目将进行超过 100,000 次扫描,以发现美国新的金属收集超积累植物。该项目使用便携式 XRF 光谱仪,将提高元素分析的准确性,并为了解美国本土植物的植物采矿潜力提供关键见解。结果不仅可以识别新的超积累植物,还可以优化本土地理条件下的金属吸收,研究有利于植物采矿的土壤-微生物相互作用,并开发第一个金属超积累植物的开放获取数据库。
Atul Varadhachary MD PhD Radiomer Therapeutics, Inc 首席执行官 采访人:Lynn Fosse,高级编辑 CEOCFO 杂志 CEOCFO:Varadhachary 博士,Radiomer Therapeutics 背后的理念是什么? Varadhachary 博士:Radiomer Therapeutics 正在基于我们专有的靶向平台开发一类新型靶向放射性药物。 背景介绍一下,靶向放射性药物,也称为放射性配体疗法 (RLT),是一类发展迅速的靶向抗癌药物。RLT 由一种附着于“配体”或“载体”的放射性同位素组成。 当将 RLT 注射到患者体内时,配体作为靶向剂,优先附着于癌细胞。 然后这些癌细胞被放射性同位素的辐射杀死。 RLT 有望具有更强的抗癌活性,包括对抗可能对其他疗法没有反应的癌症,而且副作用更少。 我们的 Radiomer 有望成为特别有效的 RLT。有效 RLT 的一个关键组成部分是靶向配体,我们的独特优势在于我们强大的配体发现平台。我们的配体是一种新型结合剂,可以靶向多种癌症。我们已经针对一些最常见癌症的靶点创建了强大的配体,包括乳腺癌、肺癌、结直肠癌、前列腺癌和胰腺癌。CEOCFO:您的方法有什么不同、更简单、更快速、更适用于其设计目的?Varadhachary 博士:放射聚合物表现出有吸引力的 RLT 特性,包括与癌细胞的特异性和强结合以及快速从体内消除,以最大限度地减少正常组织对辐射的暴露。放射聚合物还可以结合放射治疗中常用的所有放射性同位素。最重要的是,Radiomer Therapeutics 可以在 1-2 个月内制造出针对新型癌症靶点的配体,比其他可用技术快得多。这使我们能够在不到一年的时间内将新型放射聚合物用于癌症患者的测试,这至关重要,尤其是对于没有充裕时间的晚期癌症患者而言。 CEOCFO:这个想法是怎么产生的?
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年7月11日。; https://doi.org/10.1101/2024.07.07.06.602359 doi:biorxiv Preprint
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作