耐药性仍然是靶向治疗剂临床衰竭的主要驱动因素。当前的肿瘤学精密医学方法依赖于靶向已知的获得的抗性突变,例如NSCLC中的EGFR T790M或ALK/ROS突变,其旨在克服或防止耐药性的2 nd和3 Rd代分子。这些下一代有针对性的治疗方法具有越来越长,复杂的药物发育时间表和繁重的毒性(例如野生型受体靶向)或药物相互作用(DDI)。毒性限制了不同靶向治疗剂的耐受性,合规性和组合性。基于RNA的免疫疗法方法为下一代小分子靶向治疗方法提供了一种越来越有吸引力的替代方法:(1)基于RNA的方法仅需要已知的获得性抗药性序列,(2)药物开发时间表,成本和复杂性可以有意义地凝结,(3)与同一候选候选者可以针对靶向多重获得的抗性突变。rbi-1000是一种使用新型的自我复制RNA(SRRNA)的候选者,以产生针对ER+乳腺癌(ER+ BC)在响应内分泌治疗中发展的可获得耐药突变的稳健免疫力。rbi-1000包括雌激素受体配体结合结构域内的靶向突变,以及以PI3K激酶结构域中激活突变的形式旁路突变或HER2/HER3的扩增。在人的HLA-转基因小鼠中也证实了T细胞针对获得的突变的启动。启动。在这里,我们证明了该srRNA封装在脂质纳米颗粒素中的多功能CD4和CD8 T细胞中,导致肿瘤生长抑制,并改善了表达靶向获得的耐药性突变的小鼠模型。免疫细胞介导的消除表达获得的耐药性突变的克隆被预测会延长对ER+BC的内分泌控制,以类似的方式对小分子或靶向疗法的小分子或单克隆抗体的靶向疗法,但由于精确的免疫学靶标和无DDI而引起的更有利的剂量和不利的剂量和不良事件。
精神病疾病通常被认为是一种疾病,通常是成人生活中第一次发生的疾病,其特征是该人的心理经历发生了变化,例如幻觉或妄想的发作和/或人思考能力的恶化。在更严重的学习障碍者中,这可能很难诊断,但是良好的历史可以诊断出口语和不太严重的学习障碍者中的此类疾病。如果有证据表明,在发生精神病性疾病的背景下,一个人的挑战行为首次发展,那么使用这种药物是合适的,并且很可能有效地减少有关人员和相关的挑战行为的异常经历。这组药物与短期和长期副作用有关;影响身体的运动系统并导致一些僵化或震颤,或者体重增加的问题,增加糖尿病和心血管疾病的风险增加,可以通过保持最低剂量并仔细监测需要多少药物来最大程度地减少这种风险。
许多肿瘤的特征是 OXPHOS 水平低。然而,这种病理的原因在不同的癌症类型中有所不同。一些肿瘤携带线粒体 DNA 编码复合物 I 亚基(例如肾嗜酸细胞瘤)或核编码复合物 II 亚基(例如嗜铬细胞瘤和副神经节瘤)的致病突变;其他肿瘤则显示所有 OXPHOS 复合物减少,线粒体 DNA 拷贝数减少;还有一些肿瘤的线粒体质量较低 [9–13]。在许多情况下,这种下调的遗传原因仍然难以捉摸。许多肿瘤均显示 OXPHOS 水平均匀降低,例如嗜酸细胞瘤、神经母细胞瘤、肾细胞癌和星形细胞脑瘤 [10,11,14]。然而,只有一小部分癌和黑色素瘤缺乏 OXPHOS,其他肿瘤仍保留有功能性 OXPHOS 系统 [15–20]。某些癌症亚型的 OXPHOS 依赖性受基因改变和/或肿瘤微环境的影响。例如,肺癌中 KRAS 驱动的三羧酸 (TCA) 循环中葡萄糖的贡献比正常肺组织高 [21]。此外,肺癌中经常检测到 SWI/SNF 染色质复合物成分(包括 SMARCA4)的改变。SMARCA4 突变的肿瘤以 OXPHOS 和呼吸能力增强为特征,因此对 OXPHOS 抑制敏感 [22]。与磷酸酶和张力蛋白同源物 (PTEN) 野生型前列腺癌细胞相比,PTEN 缺陷细胞的线粒体通过复合物 V 消耗 ATP,而不是产生 ATP,这导致体外对复合物 I 抑制的基因型特异性敏感性 [23]。
最新的治疗方法改善了血液系统恶性肿瘤患者的治疗效果,但复发、治疗耐药性以及副作用仍然是这些治疗方法的常见限制。鉴于现有传统治疗方法的缺点,开发毒性和副作用较小的更有效的药物至关重要。草药在历史上已被证明是治疗白血病和淋巴瘤的潜在药物库,如今它们仍然是识别新药线索的丰富来源。植物源天然产物和常见化疗药物的积极协同作用也被认为是在最近的化学预防和化疗研究中关注药用植物的合理原因之一。值得注意的是,通过加入纳米颗粒或抗体靶向递送植物源天然产物将是提高其生物利用度并提高其治疗效果的重要一步。在这项研究中,我们回顾了已批准和/或正在研究的用于治疗血液系统恶性肿瘤的植物源药物。 *通讯作者:Davood Bashash,博士,伊朗德黑兰 Shahid Beheshti 医科大学联合医学科学学院血液学和血库系血液学副教授。电子邮件:David_5980@yahoo.com
Dzubak 等人,2005) 发现其广泛分布于植物界。Yin 等人 (2012) 报道了来自不同蔬菜和水果的八种三萜 (齐墩果酸、熊果酸、阿江梨酸、积雪草酸、乳香酸、科罗索酸、羟基积雪草酸和山楂酸) 以完整形式在小鼠不同器官中的生物利用度。类似的研究证明了白桦脂酸发挥其抗肿瘤特性的生物利用度 (Godugu 等人,2014)。从我们的研究中获得的数据表明,开发针对 SARS-CoV-2 刺突蛋白的三萜类药物分子是可能的。来自印度醉茄凝固素的凝固素在以刺突蛋白为目标的 AAR 下记录了较低的 BE。对结构相似的三萜和类固醇,即类固醇内酯,类固醇皂苷,类固醇糖苷生物碱,三萜糖苷,三萜皂苷和三萜甾醇,也进行了类似的观察。
细胞分裂素反应1阻遏物1 (are1) 突变体表现出 NUE 增加、衰老延迟,从而增加了谷物产量。然而,ARE1 直系同源物在小麦中的作用仍然未知。在这里,我们从中国优良冬小麦品种郑麦 7698 中分离并鉴定了三个 TaARE1 同源物。然后我们利用 CRISPR/Cas9 介导的靶向诱变技术生成了一系列带有部分或三重无效 taare1 等位基因的无转基因突变系。所有无转基因突变系都表现出增强的对氮饥饿的耐受性,并且在田间条件下表现出衰老延迟和谷物产量增加。特别是,与野生型对照相比,AABBdd 和 aabbDD 突变系表现出衰老延迟和谷物产量显著增加,而没有生长缺陷。总之,我们的研究结果强调了通过基因编辑操纵 ARE1 直系同源物以培育高产小麦以及提高 NUE 的其他谷物作物的潜力。
多形性胶质母细胞瘤 (GBM) 肿瘤在各种分化的 GBM 细胞 (d-GC) 中含有少量胶质瘤干细胞样细胞 (GSC)。GSC 会导致肿瘤复发,并对替莫唑胺 (TMZ) 产生耐药性,替莫唑胺是 GBM 化疗的标准治疗 (SoC)。为了研究 GSC 特异性线粒体功能与 SoC 耐药性之间的潜在联系,对两种患者来源的 GSC 系的线粒体代谢差异进行了评估。在这两种系中,与 d-GC 相比,GSC 的线粒体含量和功能明显较低。在体外,标准线粒体特异性抑制剂寡霉素 A、抗霉素 A 和鱼藤酮选择性抑制 GSC 增殖的程度比 d-GC 和人类原代星形胶质细胞更大。这些发现表明,线粒体抑制可以成为 GBM 中一种潜在的 GSC 靶向治疗策略,同时将脱靶毒性降至最低。从机制上讲,标准线粒体抑制剂通过诱导细胞凋亡或自噬途径引发 GSC 选择性细胞毒性作用。我们在 3 种安全的 FDA 批准药物(三氟拉嗪、米托蒽醌和吡维胺帕莫酸盐)存在下测试了 GSC 增殖情况,这些药物也都是已知的线粒体靶向药物。SoC GBM 治疗药物 TMZ 不会在胶质瘤干细胞中引发细胞毒性,即使在 100 μM 浓度下也是如此。相比之下,三氟拉嗪
预计到 2050 年,全球蛋白质需求将增长 50%。为了满足不断增长的需求并确保可持续性,需要温室气体排放低的蛋白质来源,而富含蛋白质的豆科植物种子有可能做出重大贡献。随着气候变化,像野豌豆 ( Vicia sativa ) 这样的豆科植物将供不应求,它们生长在边际种植区,耐旱,能适应多变的年度天气模式。野豌豆种子中存在的 γ-谷氨酰-β-氰基丙氨酸 (GBCA) 毒素无法消除,这阻碍了它几十年来作为人类和动物食品的利用,使这种高度适应性的物种成为“孤儿”豆科植物。然而,野豌豆基因组和转录组数据的可用性以及 CRISPR-Cas 基因组编辑技术的应用为消除 GBCA 毒素限制奠定了基础。在不久的将来,我们预计零毒素野豌豆品种将成为全球蛋白质需求的重要贡献者。
1。GTP-8.2 -7.9 2。Quercetagetin -7.8 -6.9 3。Quercetin -7.7 -6.94。Galangin-7 -7 -6.3 5。Myricetin -8.1 -7.2 6 -7.3 10。染料木黄酮-7.1 -6.1 11。结techin -7.4 -6.2 12. gossypetin -7.7.7 -6.613。5-脱氧galangin -7.6.6.7 14.DatisCeteIn -7 -7 -7 -7 -6.3 15。木犀草素 -7.4 -6.4 19. 三黄素 -7.6 -6.6 20. 芹菜素 -7 -6.5 21. 黄芩素 -7.2 -6.5 22. 瑞德西韦 -8.3 -7.7
。CC-BY-NC-ND 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2020 年 5 月 6 日发布。;https://doi.org/10.1101/2020.05.05.079848 doi:bioRxiv 预印本