有关模块描述符的更多信息,请单击模块代码。请注意,已删除了高级新鲜和大职业的模块链接,直到模块手册已更新为止。请注意,模块与2024/25学年有关,并且可能会更改
questions Syllabus: Theory Biomolecular sequence analysis (2) o Overview o Concepts Analysis of single sequence (2) o Nucleotide o Protein Pairwise sequence alignment algorithms (3) o Needleman & Wunsch o Smith & Waterman Scoring matrices for Protein and Nucleotide sequences (3) o MDM/PAM series o BLOSUM series o CSW 数据库相似性搜索(6)o快速o爆炸多个序列比对算法(6)o clustalw o肌肉o dalign o dalign o t-coffee序列徽标,共识和模式(3)序列配置文件的基本概念,配置文件的衍生;应用程序(5)O Gribskov的配置分析方法o Psi-Blast实践/教程:目标:本课程将使学生能够:了解如何使用各种算法进行生物分子序列分析了解各种参数在相应算法中使用各种参数及其对结果的影响学习和练习编码和练习一些差异,以<练习<<<<
体育与运动的基础知识(A:Yukawa)B1021005a机电工程II(INADA)[A-312] B12530070 B12530070概率和统计(A:MATSUO)[A-109] B1013004a B1013004a基本磁性锻炼基本物理学化学3(KAWAWASHIMA)(tenori)3(Kawawashima)[aawashima)[aawashima)[aawashima)] [A-308] Basic Physics Chemistry 4 B12530160 (Tenori) [A-309] B14533020 Basic Mechanical Engineering Experiments Basic Electrical and Electronic Information Mathematics Basic Analytical Chemistry 3 (Each Faculty) (Lim) (Arakawa) [A-309] B14533030 B11510110 [A-308] Basic Analytical Chemistry 4 B12510170 (Shibatomi)[A-309] B14533040
1实验和临床生物医学科学系“ Mario Serio”,佛罗伦萨大学生物化学部分,意大利佛罗伦萨50134; 2 de Biotecnologia I d de Biomedicina(IBB)和DeBioquímicaI Biogia Molecular,Universitatautònomade Barcelona,08193,西班牙巴塞罗那贝尔特拉(Bellaterra); 3比利时3000卢文的大脑和疾病研究中心开关实验室; 4比利时3000卢文的卢文库文,卢文的蜂窝和分子医学系Switch Laboratory; 5比利时3000卢文的AI和计算生物学中心开关实验室; 6物理与天文学系“ G. Galilei”,帕多瓦大学,意大利帕德沃35131; 7帕多瓦大学帕多瓦大学国家核物理研究所(INFN),意大利帕多瓦35131; 8英国CB21EW剑桥大学,Yusuf Hamied化学系错误折叠疾病中心,英国
渗透脱水是导致产品的感觉价值和保质期提高的过程之一。这项研究旨在研究渗透脱水对菠萝水果物理化学参数的影响,菠萝果实在越南的坎市收获。研究了渗透脱水溶液中糖含量的参数范围,从400至600 g/l,温度因子在渗透脱水过程中的温度因子从18至38°C(±1℃)。研究渗透脱水时间,直到出现渗透平衡为止。监测渗透脱水过程中搅拌条件的影响,并将其与常规渗透脱水进行比较。每小时渗透脱水后,评估了原材料中水分含量和糖含量的指标。还研究了一些渗透脱水样品的色差(RE)。结果表明,在连续搅拌的支持下,在38°C下的渗透脱水为600 g/l,以获得最佳的渗透脱水效果。研究结果概述了在不同浓度的渗透溶液中的渗透脱水过程。这些结果是根据每种产品的目的灵活选择渗透菠萝条件的基础(例如果冻)和消费者需求(例如甜度水平)。
Ambikapur-497001,印度Chhattisgarh,4 M.Sc.-Student,化学系,Pt。Ravishankar Shukla大学,Raipur,Chhattisgarh摘要:这项研究研究了掺杂的钛酸钡(Batio 3)陶瓷的结构,介电和光学性质,突显了它们用于高级电子应用的潜力。钛酸钡是一种突出的铁电材料,以系统的方式与各种元素一起掺杂,以改善其功能属性。通过X射线衍射(XRD)的方式描述了晶体结构和相位发展,展示了掺杂如何影响晶格参数和相位稳定性。介电特征,例如损失切线和介电常数,揭示了掺杂剂对介电行为和铁电特性的影响。光学研究,包括UV-VIS光谱法检查了带隙和光透射率,这对于光电子用途至关重要。发现,靶向掺杂可以有效地改变钛酸钡陶瓷的结构,介电和光学特性,使其非常适合电容器,传感器和其他电子设备。这项研究为优化钛酸钡陶瓷提供了宝贵的见解,以在各种技术应用中实现卓越的性能。也已经观察到某些掺杂剂减少了带隙的能量,从而导致更好的光学透明度和可调折射率,这对于光电应用非常有价值。关键字:钛盐(Batio 3),掺杂陶瓷,介电特性,光学特性,1。引言钛酸钡(Batio 3)钙钛矿结构的陶瓷,由于其出色的介电,铁电和压电性特性,一直是电子应用中的基础材料[1]。这些独特的特征使Batio 3在各种电子设备中必不可少,包括多层陶瓷电容器(MLCC),热敏电阻,执行器和传感器[4]。该材料的高介电常数和可调节的铁电特性对电容器特别有益,在该电容器中,有效的能量存储至关重要[10]。但是,随着电子技术的发展,越来越多的需求以进一步增强和优化Batio 3的内在特性,以满足
摘要 Pliek U 是亚齐的传统发酵产品,由椰子发酵而成,具有独特的香气和味道。本研究旨在分析 Pliek U 在发酵过程中的化学特性,重点关注水分含量、pH 值和水活度 (aw)。数据显示,这些化学参数受原料类型、发酵时间、压榨次数和处理方法的显著影响。样品的水分含量范围为 48% 至 51.3%,半成熟椰子的水分含量与成熟或混合椰子相比最高。更频繁地压榨半成熟椰子并不能完全消除水分,因为半成熟椰子肉的结构较软,往往会保留更多的水分。此外,发酵过程中的微生物活动通过产生气体和水等代谢物来影响水分含量。所有样品的 pH 值保持稳定在 5.6,反映了发酵过程中乳酸菌 (LAB) 的最佳活性。这种稳定性表明发酵过程得到良好控制,从而产生了安全、高质量的产品。乳酸菌在生产有机酸方面起着至关重要的作用,有机酸不仅可以调节 pH 值,还有助于 Pliek U 形成独特的口味。Pliek U 的水分活度 (aw) 范围为 0.80 至 0.82,可支持产品的微生物稳定性和保质期。较低的 aw 值可限制致病微生物和腐败微生物的生长,从而延长产品的保质期。然而,过低的 aw 值会影响质地,使产品变硬、变干。因此,控制 aw 对保持产品的质地、口味和微生物稳定性至关重要 关键词:发酵、水分含量、Pliek U、传统产品、水分活度 PENDAHULUAN
抽象的不加选择的电池浪费是危害人类健康和环境的巨大问题。这项研究旨在分析Ogun State的电池回收利用污染的健康影响,该公司拥有各种各样的电池回收行业。在该研究地点,在湿和干燥的季节中研究了40种水样品,以评估电池回收废物对地下水的影响。除TSS外,地下水的生理化学参数随季节而变化,并且在允许的极限范围内。The electrical conductivity (EC), turbidity, Phosphorus, Biochemical oxygen demand (BOD), Dissolve oxygen (DO), and Total suspended solid (TSS) within the study year ranges from 51.00 - 178.22 S/cm, 2.26 - 2.36 NTU, 0.089 - 0.66 mg/L, 13.3 - 14.2 mg/L, 5.06 - 5.67 mg/l和78.0-88.4 mg/l。Furthermore, the average concentrations (in ppm) obtained for Mn, Cu, Zn, Ni, Cd, As, Fe, Pb, Cr, and Co are 0.407 – 0.42, 0.355 – 0.369, 0.179 – 0.225, 0.061 – 0.265, 0.366 – 0.464, 0.488 – 0.631, 0.544 – 0.601, 0.481 - 0.576,0.284 - 0.334,0.3 - 0.382。重金属污染指数(HPI)值在3.880到4.528之间表示重金属污染的水平最小,但是水质指数(WQI)得分范围为124.68至131.46,表明潜在的环境危害。关键字:电池废物,重金属,物理化学参数和电池回收。简介
脂质纳米颗粒 (LNP) 已成为行业中占主导地位的药物输送技术,有望输送 RNA 来上调或下调任何目标蛋白质。LNP 大多通过物理化学靶向技术靶向特定细胞类型或器官,其中 LNP 的脂质组成经过调整以找到具有所需趋向性的混合物。本文研究了肺趋向性 LNP,其器官趋向性源于含有阳离子或可电离脂质,从而赋予正的 zeta 电位。令人惊讶的是,这些 LNP 被发现会诱发大量血栓形成。这种血栓形成出现在肺部和其他器官中,并且研究表明,先前存在的炎症会大大加剧这种血栓形成。这种凝血是由各种含有阳离子脂质的制剂引起的,包括 LNP 和非 LNP 纳米颗粒,甚至是由不具有永久阳离子电荷的肺趋向性可电离脂质引起的。该机制依赖于 LNP 与纤维蛋白原结合并改变其构象,进而激活血小板和凝血酶。基于这些机制,设计了多种解决方案,使带正电荷的 LNP 能够靶向肺部,同时改善血栓形成。这些发现说明了必须尽早研究物理化学靶向方法的风险,并在仔细了解生物机制的情况下重新设计。
nipa sap是一种甜美的半透明饮料,起源于NIPA Palm(NYPA Fruticans)树。在砂拉越,NIPA SAP成为NIPA糖或本地称为古拉Apong的原材料。但是,NIPA SAP经历了自然发酵,从而改变了NIPA SAP的特性,包括味道,香气和质量。发酵的NIPA SAP是白色的,具有不愉快的香气和味道,这使其无法接受。因此,它不再适合制作NIPA糖。这项研究旨在确定NIPA PALM SAP从新鲜到发酵的物理化学和微生物变化。允许NIPA SAP在室温下进行自然发酵56天。在第一个星期每24小时收集样本,在随后的一周中每周一次。使用高性能液相色谱(HPLC)分析了所选的生理化学品质,而使用扩散板分析了微生物含量。新鲜的NIPA SAP显示出最高的糖(334.2±12 g/l),蔗糖作为主要糖(231.5±4.3 g/l),其次是果糖(42.1±1.2 g/L)和葡萄糖(29.7±3.2 g/L)。新鲜的NIPA SAP还具有最低的乙醇(0.08±0.03 g/L),乳酸(1.09±0.06 g/L)和乙酸(0.05±0.01 g/L)以及微生物和酵母菌浓度。后来,乙醇在第4天(9.80±0.1 g/l)开始积聚,最高峰为第21天(19.1±2.01 g/l)。微生物浓度也会改变,影响NIPA SAP的质量。由于NIPA SAP在砂拉越人民的生活方式中起着如此重要的作用,因此这项研究可以更好地了解其发酵过程的微生物学和生物化学。因此,应考虑正确处理新鲜NIPA SAP的适当计划,以确保增值产品生产的质量。