使用标准板数,分析性的,全细菌的社区分析和DNA测序技术评估了尼日利亚Akwa Ibom州Iko River河口沉积物的摘要微生物丰度,多样性和物理化学。总昆虫细菌的总范围为2.1×10 6到3.6×10 6 CFU/g,硫酸盐还原细菌(SRB)从2.1×10 1 CFU/g到4.1×10 1 CFU/g。培养依赖性分析表明,枯草芽孢杆菌,kleibsiella sp,铜绿假单胞菌和P.粉末是最丰富的物种(100%)。宏基因组分析表明,对细菌种类的门杆菌和酸性杆菌的计数分别最高和最低。这两个顶点被未知的生物体占据,读数为582.0(33.88%)和562(33.26%)。沉积物中最著名的细菌是硫果尖,菲氏菌20.0(1.36%),富西科克杆菌15.0(1.02%),噻aniomicrospira chilensis 13.0(0.88%)和硫磺菌13.0(0.88%)(0.88%)。物理化学分析显示,上游沉积物pH(6.20),(6.40)中游,(6.50)下游,温度(上游28 o C)和下游电导率(130µsscm -1)略有下降。Iko河河口沉积物中丰富的有机物和微生物种群为商业和生态上重要的动植物提供营养和利基。这些数据可能在未来的生态评估,监测和评估尼日尔三角洲
人工智能 (AI) 方法在药物发现和递送系统的设计和优化中得到了广泛考虑。在此,机器学习方法用于优化载姜黄素 (CUR) 纳米纤维的生产。通过文献调查挖掘所需数据,并检测和研究两类(包括基于材料和机器的参数)作为最终结果的有效参数。AI 结果表明,高密度聚合物具有较低的 CUR 释放率;然而,随着聚合物密度的增加,许多类型聚合物中的 CUR 包封效率 (EE) 都会增加。当分子量在 100 至 150 kDa 之间、CUR 浓度为 10 – 15 wt% 时,可获得最小直径、最高 EE 和最高药物释放百分比,聚合物密度在 1.2 – 1.5 g mL 1 范围内。此外,最佳距离为 23 cm、流速为 3.5 – 4.5 mL h 1 、电压在 12.5 – 15 kV 范围内可获得最高的释放率、最高的 EE 和最低的纤维平均直径。这些发现为未来通过 AI 方法设计和生产具有理想特性和性能的载药聚合物纳米纤维开辟了新道路。
摘要:聚酰亚胺(PI)是一类介电聚合物,用于广泛的电子设备和电气工程应用,从低压微电机到高压隔离。由于其出色的热,电气和机械性能,它们得到了很好的赞赏,每个特性都需要根据最终应用来唯一优化。例如,对于高压应用,必须优化最终的聚合物分解场和介电性能,这两者都取决于固化过程和PI的最终物理化学特性。迄今为止的大多数研究都集中在聚合物的一组有限的特性上,并分析了从物理,机械,机械或以电气为中心的观点来固化的效果。本文试图克服这一点,在同一研究中统一所有这些特征,以准确描述治疗温度对PI性质和工业加工量表的普遍影响。本文报告了同类的最广泛研究对治疗温度对聚酰亚胺的物理化学,机械,热和电气特性的影响,该特性是多酰亚胺,特定的聚乙醇硫酸苯二酚-CO-4、4'-氧基二氨基氨基氨基烷(PMDA/ODA)(PMDA/ODA)。不仅要精确地研究了治疗温度的优化,不仅在iMidation(DOI)方面进行了精确研究,而且还考虑了整个物理特性。尤其是,分析阐明了电荷转移复合物(CTC)在这些特性上的关键作用。低场处的电特性表现出可能是由于DOI引起的最终PI特性的增强。结果表明,尽管随着DOI和CTC的形成,热和机械性能都会改善,但电气特性,尤其是在高场面条件下,随着CTC形成的增加,在较高温度下降解时,拮抗行为会增强DOI。相反,在高电场上,电导率结果显示在中等温度下,强调当在这种平衡的情况下进行热进型过程时,高DOI和PI链之间的理想折衷。此平衡允许具有优化电气性能的PIFIM的最高性能,总体而言,可以实现最佳的热和机械性能。
由于电子从大分子链上的π分子轨道离域,了解有机大分子的电子结构和立体化学之间的密切联系,从而获得半导体或金属导电性,这有利于解释和理解它们的电学、电化学和光学性质以及不同的导电模式,也将更好地解释这些性质,特别是在通过化学聚合或电沉积开发超薄导电或半导体层时;这些结构用于开发电流或阻抗生物传感器(生物电子学)中DNA、RNA或蛋白质的固定表面,以及OJI(“有机”结型晶体管)、Oled(有机发光二极管)、用于纳米电化学、半导体电化学和光电化学的纳米电极,以及它们在数字显示、防腐、量子点(纳米点)和有机光伏电池(OPVC)中的众多应用。
1 南洋理工大学机械与航空航天工程学院,639798,新加坡 2 丹麦技术大学物理系催化理论中心,林比,丹麦 2820 3 新加坡科技研究局(A*STAR)材料研究与工程研究所,2 Fusionopolis Way,Innovis,新加坡 138634,新加坡 5 中国科学院宁波材料技术与工程研究所,宁波 315201,中国 4 中山大学材料学院,广州 510275,中国 6 南洋理工大学电气电子工程学院微纳电子中心(NOVITAS),639798,新加坡 7 CINTRA CNRS/NTU/THALES,UMI 3288,Research Techno Plaza,637553,新加坡Karen Chan:kchan@fysik.dtu.dk;Hong Li:ehongli@ntu.edu.sg 关键词:锂硫电池、催化多硫化物转化、物理化学限制、空心纳米笼
© 美国政府(美国境外)2018 本作品受版权保护。出版商保留所有权利,无论涉及全部或部分材料,特别是翻译、重印、重新使用插图、朗诵、广播、在微缩胶片或任何其他物理方式上复制、传输或信息存储和检索、电子改编、计算机软件或通过现在已知或今后开发的类似或不同的方法。本出版物中使用的一般描述性名称、注册名称、商标、服务标记等并不意味着(即使没有具体声明)此类名称不受相关保护法律和法规的约束,因此可以免费用于一般用途。出版商、作者和编辑可以安全地假定本书中的建议和信息在出版之日是真实准确的。出版商、作者或编辑均不对本文所含材料或可能出现的任何错误或遗漏提供明示或暗示的保证。出版商对已出版地图中的司法管辖权主张和机构隶属关系保持中立。
catanionic表面活性剂混合物。与充电表面活性剂(Catanionic混合物)的混合物具有新颖的溶液和界面特性。静电效应与表面活性剂分子几何形状之间的相互作用允许相位行为的多样性。已经探索了几种catanionic混合物的相行为和微观结构,包括十二烷基硫酸钠(SDS) - 二二烷基二甲基溴化铵(DDAB);气溶胶OT-DDAB;胆汁盐dab;以及氯化二甲基铵的氯化二甲基铵,具有变化的链长的氢化和氟钠羧酸盐。在高水含量,稳定的囊泡,沉淀(catanionic固体)或两个共存液体的情况下,可能会根据系统而形成。在较高的表面活性剂浓度下,相位行为由几个新的液晶相的外观主导。混合系统的一个特征是,通过使用表面活性剂混合比和总浓度以及烷基链长度的对称性/不对称效应,跨越从胶束到囊泡再到液晶的一系列骨料结构是一个琐碎的问题。(A. Khan,E。Marques(Porto),H。Edlund(Sundsvall),C。LaMesa(罗马))。