在这项工作中,提出了一种新的准稳态守卫测量方法,用于圆柱电池的热物理参数。通过有限元分析和标准ANSI 304不锈钢样品的测量来评估热保护方法的有效性。基于数值模拟,在测试中测试的圆柱电池的热量损失最大程度为2.4%。通过优化测试配置,进行了电池的实验表征,以准确确定热参数。实验结果表明,18650和21700电池的轴向导热性分别在11.8 - 15.4wÅM -1°C - 1和12.6 - 16.7 w·m -1°C - 1分别远低于Laser Flash方法的材料测试值。轴向导热性随温度和SOC的增加而增加,并且比温度随温度线性增加,但随着SOC的变化很小。这项研究表明了一种快速,成本效益和无损的方法,可以同时且准确地获得轴向导热性和特异性热量。随后的有关圆柱电池热设计的热分析也基于测量的热参数进行,该参数促进了针对不同类型的圆柱电池的适当热管理策略。
定制成像级镜头的原型制作和少量生产是困难且昂贵的,尤其是对于更复杂的非球面形状而言。流体形状最近被提议作为一种潜在的解决方案:它利用液体之间界面的原子水平平滑度,其中界面的形状可以通过边界条件,浮力控制和其他物理参数仔细控制。如果一种液体是树脂,则可以通过固化来“冷冻”其形状,从而产生固体光学元素。虽然流体形状是一个有前途的途径,但该方法产生的形状空间目前仅以偏微分方程的形式描述,这些方程与现有镜头设计过程不相容。更重要的是,我们证明现有的PDE不准确,不准确。在这项工作中,我们开发了由流体成型技术产生的形状太空镜片的新表述。它克服了以前模型的不准确性,通过可区分的实现,可以基于可区分的射线跟踪将最新的端到端光学设计管道集成到最新的端到端光学设计管道中。我们通过模拟以及初始物理原型广泛评估模型和设计管道。
1. 简介 微波雷达测量云层和降水的一大优势是能够根据雷达反射率因子 Z 检索定量内容数据。这可以通过设计基于 Z 与各种微物理参数(例如冰水含量 IWC 或降雨率)之间的经验关系的算法,或基于将 Z 与其他测量值相结合的多种传感器方法来实现。然而,由于大气中微物理条件的多样性,算法只需要应用于那些被认为有效的条件。换句话说,首先需要确定目标,然后选择合适的算法。算法选择过程取决于云相以及水文气象密度、形状和大小分布等基本因素。例如,虽然卷云、高层云和积雨云的上部都是以冰相云为主的云,但不可能应用单一算法来检索这些目标中的 IWC:卷云通常只包含单个冰晶,高层云在较高温度下可能包含低密度冰晶聚合体,而积雨云可能结合了冰晶、雪花、结霜颗粒、霰甚至冰雹。不同类型的云通常受不同的云动力学过程控制,具有不同的微物理特性,从而导致不同的云辐射强迫 (H
内在化(31,32)。生物大分子,例如蛋白质和核酸,具有较大的大小,可阻碍有效的细胞摄取。纳米颗粒,甚至比生物大分子大的纳米颗粒,也可以通过内吞途径进行内化(33)。此外,可以通过表面功能化来设计纳米颗粒,以满足基因递送(包括细胞摄取)的关键要求。例如,纳米颗粒的内吞作用可以通过靶向鳞茎形的膜内知来增强纳米颗粒。Shuvaev及其同事开发了纳米颗粒,具有口腔特定的抗体,用于通过小窝途径递送的有效递送(34,35)。可以通过增强的渗透性和保留率(EPR)(36 - 38)来实现目标区域中纳米颗粒的浓度增加。仅通过纳米颗粒的巨大大小,它们倾向于在肿瘤组织中积聚,这是由于通过病理血管生成形成的漏水血管。纳米颗粒的表面电荷是一个重要的生物物理参数,通常在纳米颗粒和靶向细胞之间逆转纳米 - 生物接口的静电吸引力。在癌症诊断和治疗学中,表面电荷驱动的靶向被证明对有效在癌症诊断和治疗学中,表面电荷驱动的靶向被证明对
在本文中,我们的主要目的是以Fisher信息的形式应用参数估计理论的技术和量子计量学的概念,以赋予Markovian近似下两个纠缠Qubit System的开放量子动力学中某些物理量的作用。存在各种特征于这种系统的物理参数,但不能被视为可观察到的任何量子机械。必须进行详细的参数估计分析以确定此类数量的物理一致参数空间。我们同时应用经典的Fisher信息(CFI)和量子Fisher信息(QFI)正确估计了这些参数,这些参数起着重要作用,以描述开放量子系统的不平衡和远程量子纠缠现象。量子计量学起着两倍的优势作用,提高了参数估计的精确性和准确性。此外,在本文中,我们在量子计量学方面提出了一种新的途径,该途径超过了经典参数估计。我们还提出了在晚期尺度上复兴不平衡特征的复兴,这是由于早期尺度上的远距离量子纠缠而引起的,并在贝尔在早期时间尺度上违反不平等的不平等现象提供了一种物理解释。
摘要:热电材料早已被证明能有效地将热能转化为电能,反之亦然。自从半导体被用于热电领域以来,人们做了大量工作来提高它们的效率。它们的热电物理参数(塞贝克系数、电导率和热导率)之间的相互关系需要特殊的调整,才能最大限度地提高它们的性能。在开发热电性能的研究中,已经报道了各种方法,包括掺杂和合金化、纳米结构和纳米复合。在不同类型的热电材料中,层状硫族化物材料是具有独特性能的独特材料。它们具有低的自热导率,并且它们的层状结构使它们易于修改以提高其热电性能。在这篇综述中,提供了热电概念的基本知识以及提高性能系数的挑战。文中简要讨论了不同组层状硫属化物热电材料的结构和热电性能。文中还介绍了文献中用于提高其性能的不同方法以及该领域的最新进展。文中重点介绍了石墨烯作为层状硫属化物材料基质的有前途的纳米添加剂,并展示了其对提高其性能系数的影响。
摘要:环境条件会影响人类健康、情绪和精神力量。因此,不同学科对教室环境条件的测量和控制进行了大量研究。此外,许多研究利用各种硬件和软件同时或出于信息目的确定学生的一些身体和心理表现。然而,这些研究没有考虑自动控制过程和个性在满足教室环境条件方面的影响,而这些环境条件会影响学生的行为。本研究旨在减少环境因素对学习的不利影响,并使用最新技术和方法以更高的精度控制更多必要的物理参数。因此,提出了一种新的智能教室孵化器 (SCI) 算法,包括硬件、软件和实验研究,其中即使在同一个教室环境中也可以考虑个体差异,并介绍了它的实现。该系统可以在任何有互联网连接的地方访问和监控数据。此外,它是基于物联网设计的,因为它允许通过 Web 服务或依赖数据的操作进行数据传输。所有必要的设备都放在教室里,不会影响学习环境,也不会分散课堂注意力。表示实施模型可靠性的 Cronbach α 系数为 0.891。
对称性在托管迪拉克电子的材料中起着关键作用,并以我们通过调整物理参数(例如在范德华异质结构中扭曲)来完全弄平了狄拉克锥的能力。乍一看,扭曲的双层中的出现的moir'e模式乍一看,与初始堆叠顺序无关,因此只有当一层相对于另一个层翻译时,才会改变。但是,当扭曲角度很大时,在扭曲的双层石墨烯的情况下,在晶格和电子结构的水平上都可以看到差异。在这项工作中,我们首先解决了扭曲的kagome双层的问题,并表明高对称性kagome双层的旋转和二面对称性均用于所有相称的扭曲角,具有6倍对称的扭曲中心。因此,我们证明了小扭曲角系统的精确对称性取决于双层的初始堆叠。我们将方法的原理进一步应用于具有3倍对称扭曲中心的扭曲双层石墨烯,以恢复[E. J. Mele,物理。修订版b 81,161405(2010)]。
在本文中,我们的主要目标是应用参数估计理论技术和 Fisher 信息形式的量子计量概念来研究马尔可夫近似下某些物理量在两纠缠量子比特系统的开放量子动力学中的作用。存在各种表征此类系统的物理参数,但不能将其视为任何量子力学可观测量。必须进行详细的参数估计分析以确定此类量的物理一致参数空间。我们应用经典 Fisher 信息 (CFI) 和量子 Fisher 信息 (QFI) 来正确估计这些参数,这些参数在描述开放量子系统的非平衡和长距离量子纠缠现象中发挥着重要作用。与经典参数估计理论相比,量子计量发挥着双重优势,提高了参数估计的精度和准确度。此外,本文提出了一种量子计量方面的新途径,它超越了经典参数估计。我们还提出了一个有趣的结果,即由于早期时间尺度上的长程量子纠缠而导致的后期时间尺度上非平衡特征的复活,并根据早期时间尺度上贝尔不等式违反导致的非局域性提供了物理解释。
摘要:从历史上看,精油 (Eos) 的应用方式多种多样,现代科学证实了其抗菌、抗氧化、抗炎和神经保护特性。牛至 (Origanum vulgare) 是精油的重要来源,尤其富含百里酚、香芹酚和 β-石竹烯等化合物,这些化合物有助于其发挥强大的抗菌作用。这些作用包括破坏细菌细胞膜、干扰群体感应和抑制生物膜形成。牛至精油对抗生素耐药和非耐药菌株均有效,例如大肠杆菌、金黄色葡萄球菌和铜绿假单胞菌。这种精油的成分会破坏膜完整性、离子转运、膜表面电荷、生物膜形成和其他生物物理参数,最终导致细胞死亡。研究强调了它在对抗抗生素耐药性方面的潜力,无论是单独使用还是与传统抗生素协同使用。此外,牛至精油有望成为一种天然治疗剂。继续研究其复杂的化学相互作用将进一步阐明其在抗菌治疗中的全部潜力。这篇综述文章介绍了牛至精油抗菌作用的可能机制及其应用前景。