o 获得持续学习和知识更新的基本知识工具 o 学生将培养不断更新物理研究中的数学技术和技能的态度。 教学大纲 内容知识 度量空间。定义。例子。开集、闭集、邻域。拓扑空间。连续映射。稠密集、可分空间。收敛和柯西序列。完备性。例子。度量空间的完备性。巴拿赫空间。向量空间。范数空间。完备性和巴拿赫空间。例子:有限维空间、序列空间、函数空间。有界线性算子。连续性和有界性。BLT 定理。连续线性泛函和对偶空间。有界线性算子的巴拿赫空间。例子。测度论简介。勒贝格积分。Sigma 代数和 Borel 测度。可测函数。支配和单调收敛。富比尼定理。例子:绝对连续测度、狄拉克测度、康托测度。勒贝格分解定理。希尔伯特空间。内积。欧几里得空间和希尔伯特空间。正交性、勾股定理。贝塞尔不等式和柯西-施瓦茨不等式。三角不等式。平行四边形定律和极化恒等式。例子。直和。投影定理。Riesz-Fréchet 引理。正交系统和傅里叶系数。正交基和 Parseval 关系。Gram-Schmidt 正交化程序。与 l^2 同构。张量积和积基。希尔伯特空间上的线性算子。有界算子的 C ∗ -代数。正规、自伴、酉和投影算子。Baire 范畴定理。一致有界性原理。一致、强和弱收敛。一些量子力学。无界算子。伴生。对称和自伴算子。例子:乘法和导数算子。本质自伴算子。自伴性和本质自伴性的基本标准。图、闭包
在错综复杂的科学挂毯中,学科经常融合并相交,生物物理学是一个引人入胜的十字路口。这是一个将物理学原理与生活系统的复杂性相结合的领域,在分子和细胞水平上揭示了生命的奥秘。从了解肌肉收缩的力学到破译DNA折叠的复杂性,生物物理学会深入研究基于生物学现象的基本物理过程。本文旨在概述这个跨学科领域,阐明其重要性和多样化的研究途径。在其核心方面,生物物理学试图将物理学的定量方法和理论应用于阐明生物学过程。它体现了生物学,化学和物理学的结合,提供了一种独特的观点,使研究人员能够以传统生物学方法无法实现的精确性来探测活生物体的内部运作。通过利用热力学,电磁和力学等原理,生物物理学家揭示了管理生物学现象的机制,为各个领域的开创性发现铺平了道路。[1,2]。
摘要 计算蛋白质设计有助于发现具有规定结构和功能的新蛋白质。最近报道了使用新颖的数据驱动方法进行的令人兴奋的设计,这些方法大致可分为两类:基于进化的方法和受物理启发的方法。前者推断进化相关蛋白质组所共有的特征序列特征,例如保守或共同进化的位置,并将它们重新组合以生成具有相似结构和功能的候选物。后者使用机器学习替代品估计关键的生化特性,例如结构自由能、构象熵或结合亲和力,并对其进行优化以产生改进的设计。在这里,我们回顾了这两个轨道上的最新进展,讨论了它们的优点和缺点,并强调了协同方法的机会。
量子物理学将我们对小世界的理解倒闭,就像拼图插入到位一样。出生于20世纪初期的突破,这项激进科学有助于我们掌握原子和亚原子尺度上发生的事情。它的思维弯曲原则吹走了古典思想和催生的创新,具有深厚的哲学意义。一个关键概念是波颗粒二元性:像电子这样的粒子可以是波和粒子。这种怪异是由阿尔伯特·爱因斯坦(Albert Einstein)弄清楚Light的粒子侧时首先发现的,而Louis de Broglie则表明,即使颗粒也可以像波浪一样行为。这模糊了粒子和量子水平的波之间的界线。量化是另一个至关重要的想法 - 某些物理价值(例如能量)仅在离散的块中。Max Planck首先提出了这个概念,当他通过建议能量出现在称为Quanta的数据包中,从而解决了黑体辐射问题。后来,Niels Bohr将其应用于原子,显示了电子如何在特定能级之间跳跃。海森伯格不确定性原则指出,我们不知道两种属性,例如位置和动力,同时具有无限的精度。这种破坏了古典的决定论,将固有的不确定性引入量子世界。这就像试图查明超速弹 - 您可以接近,但永远不会钉住它。最后,叠加让量子系统一次在多个状态下,直到我们对其进行测量。想象一下同时在两个地方做两件事!这种基本财产支撑着许多量子物理学对现实最令人惊讶的主张。(注意:原始文本是用偶尔的拼写错误重写以遵守指定概率的。)物理学家对微小颗粒在量子水平上的行为着迷,在量子水平上,发生了奇怪的现象和隧道的发生。量子力学表明这些颗粒存在于多个状态,直到观察到,并且测量行为本身会影响其性质。这是通过诸如双缝测试之类的实验证明的,在观察时粒子的行为不同。量子场理论试图在一个框架内统一所有基本力量,从而揭示了物质和能量之间的复杂舞蹈。**纠缠**纠缠是一种奇怪的现象,其中颗粒被连接起来,在巨大的距离上瞬间相互影响。这违反了时空的经典思想,并被称为“远处的怪异动作”。纠缠粒子用于加密和计算等量子技术,从而提出了有关信息传输限制的深刻问题。**观察者效应**观察者效应突出了观察与现实之间的相互作用。在实验中,当观察到与未观察到的,具有挑战性的经典观念时,粒子的行为可能会有所不同,即现实独立于测量。量子力学表明,观察行为本身在塑造量子系统的性质中起作用。**量子隧道**量子隧道允许粒子穿过由于波浪状的行为而在经典上是无法克服的障碍。这种现象是许多物理过程和技术(包括核融合和电子设备)的基础。**互补原理**互补原理指出,量子实体具有双重特性 - 例如波浪状和粒子样行为 - 无法同时观察到。这个概念调解了量子力学中明显的矛盾,强调了对多种观点完全理解量子现实的需求。**量子场理论**量子场理论将量子力学扩展到场,提供了描述自然基本力量的统一框架。通过探索物理和能量之间的复杂舞蹈,物理学家继续揭开量子世界的奥秘。量子场理论(QFT)是基于粒子物理学标准模型的理论框架,从基础领域的粒子行为提供了全面的解释。QFT揭示了这些场的激发粒子是如何通过交换携带力的粒子(例如电磁力的光子)和强核力量的振动而相互相互作用的。通过众多实验,QFT已实现了已得到广泛确认的精确预测。量子力学的原理,包括波粒二元性,能量的量化和不确定性原理,构成了现代物理的基础。对量子物理学的这种基本理解重塑了我们对微观世界的理解,揭示了一种以深远的相互联系,概率和丰富现象为特征的现实,这些现象挑战了古典直觉。这些概念驱动了技术创新,例如半导体,激光器和量子计算机。对量子力学的持续研究继续推出对宇宙基本本质的新见解,既推动了科学进步又推动哲学探究。探索量子原则不仅加深了我们对物理定律的理解,而且还扩大了人类的知识和技术能力。本课程是本科量子物理序列的第一部分,引入了量子力学的基本原理。它涵盖了一维和三维设置中量子物理学,波浪力学和Schrödinger方程的实验基础。材料探索了诸如潜在井,谐振传播,散射和中心电位之类的主题。本课程基于Zwiebach的教科书“掌握量子力学”(2022),该课程对该主题提供了全面的处理。演讲与亚当斯课程(2013)的覆盖深度和关注特定主题的不同之处。两个课程涵盖了类似的材料,但它们具有不同的观点和问题集。注意:我应用了“写为非母语说话者(NNE)”的重写方法来维持原始含义和音调,同时将语言调整为非本地人英语说话者的水平。
抽象目的。前庭疾病对个人的日常运作和生活质量构成了重要的挑战,需要有效的管理策略。这篇全面的评论探讨了前庭物理疗法,包括评估技术,干预方式,技术创新和跨学科合作的现代进步。材料/方法。准确的评估和诊断对于针对独立需求定制治疗计划至关重要。传统的临床测试,例如Dix-Hallpike操纵和头部脉冲测试(HIT),仍然是基础的,而诸如视频头部脉冲测试(VHIT)之类的新兴技术则提供了前庭功能的客观度量。良性阵发性阵发性位置眩晕(BPPV)的处理通常涉及Canalith Reposising操作(CRM),并进行了最近的修改和增强的现实应用程序,从而增强了疗效和患者的舒适度。结果。前庭康复疗法(VRT)在促进中枢神经系统补偿前庭缺陷方面起关键作用。纳入靶向平衡,凝视稳定,习惯和感觉整合,VRT有助于减轻症状和功能改善。技术创新,包括虚拟现实(VR)系统和智能电话应用程序,增强传统VRT方法,增强参与度和可访问性。此外,医疗保健行业之间的跨学科合作确保了对前庭分歧的全面管理。结论。物理治疗师,耳鼻喉科医生,神经病学家,听力学家和心理学家合作通过教育和咨询来提供授权的护理并赋予患者权力。现代的前庭物理疗法是一种多方面的方法,可以解决前庭疾病患者的复杂需求。通过利用基于证据的实践,整合技术解决方案并促进跨学科的伙伴关系,卫生保健提供者可以优化治疗结果并实现患者的整体健康状况。
让我们想象一下,尽管缺乏任何包罗万象的图像,但抽象的数学结构可以比以往更有效地指导我们的(技术)活动,可能还会借助一组笨拙、不完整的辅助图像。在这种新情况下,通常的知识层次结构将被颠倒过来。与标准的优先顺序不同,以情境为中心的实践知识将优先于与精心设计的统一表征相关的理论知识;就像在胡塞尔的《欧洲科学的危机》中,生活世界优先于理论“子结构”一样。在这里,人们不会将表征解释为超越原始体现对不断变化的现象模式的适应的知识的完成阶段,而是将表征视为有时用于高度高级体现适应形式的可选工具。至于数学形式主义,它们将不再被视为现实世界的结构图像,而是被理解为我们针对变化的现象景观做出身体行为的最精确可能性的系统清单(与让·皮亚杰的遗传心理学或安德鲁·皮克林的新实用主义一起)。柏拉图式的了解自然形式的梦想将被这样的认识所驱散:数学物理理论是形式化知识的变体。