i。节拍现象用于匹配艺术家不同乐器的频率。II。 可以使用多普勒雷达确定飞机的速度。 Beats现象是由于飞机反射后源产生的频率和在源接收的频率而引起的,这使我们能够计算飞机的速度。 iii。 多普勒超声检查和超声心动图的作用于节拍现象的原理。 iv。 可以使用节拍现象来确定声音的未知频率。 Q. 9定义:电离能。 ans。 原子的电离能量是以该原子的基态以设置电子不含电子所需的电子所需的最小能量。II。可以使用多普勒雷达确定飞机的速度。Beats现象是由于飞机反射后源产生的频率和在源接收的频率而引起的,这使我们能够计算飞机的速度。iii。多普勒超声检查和超声心动图的作用于节拍现象的原理。iv。可以使用节拍现象来确定声音的未知频率。Q. 9定义:电离能。 ans。 原子的电离能量是以该原子的基态以设置电子不含电子所需的电子所需的最小能量。Q.9定义:电离能。ans。原子的电离能量是以该原子的基态以设置电子不含电子所需的电子所需的最小能量。
1 Richards,K.,Senecal,P。K.,&Pomraning,E。(2023)。 收敛3.1手册。 融合科学公司,威斯康星州麦迪逊。 2 Keniar,K。和Garimella,S。“圆形和平方微型和迷你通道中制冷剂冷凝的实验研究”。 国际热与传播杂志176(2021):121383。 3 Yue,Z.,Battistoni,M。和Som,S。(2020)。 使用高保真模拟的发动机燃烧网络喷射器喷射G喷射器具有详细的喷油器几何形状。 国际发动机研究杂志,21(1),226-238。 4 Magnotti,G。M.,Sforzo,B。 A.和Powell,C。F.(2022年,6月)。 通过在横流中撞击液体射流对壁膜形成的计算研究。 在涡轮博览会中:土地,海洋和空气的动力(第1卷 85994,p。 V03AT04A030)。 美国机械工程师学会。1 Richards,K.,Senecal,P。K.,&Pomraning,E。(2023)。收敛3.1手册。融合科学公司,威斯康星州麦迪逊。2 Keniar,K。和Garimella,S。“圆形和平方微型和迷你通道中制冷剂冷凝的实验研究”。国际热与传播杂志176(2021):121383。3 Yue,Z.,Battistoni,M。和Som,S。(2020)。使用高保真模拟的发动机燃烧网络喷射器喷射G喷射器具有详细的喷油器几何形状。国际发动机研究杂志,21(1),226-238。4 Magnotti,G。M.,Sforzo,B。A.和Powell,C。F.(2022年,6月)。通过在横流中撞击液体射流对壁膜形成的计算研究。在涡轮博览会中:土地,海洋和空气的动力(第1卷85994,p。 V03AT04A030)。美国机械工程师学会。
1. Li, D. 等人。扩展分辨率结构化照明成像的内吞和细胞骨架动力学。91 Science 349 , 944–944 (2015)。92 2. Gustafsson, MGL 使用结构化照明显微镜将横向分辨率极限提高两倍。Journal of Microscopy 198 , 82-87 (2000)。94 3. Gustafsson, MGL 等人。通过结构化照明在宽视场荧光显微镜中实现三维分辨率加倍。Biophysical Journal 94 , 4957-4970 (2008)。96 4. Cragg, GE 和 So, PTC 使用驻波增强横向分辨率。Opt. Lett. 97 25 , 46-48 (2000)。 98 5. Kner, P. 等人。通过结构化照明对活细胞进行超分辨率视频显微镜检查。自然方法 6 , 99 339–342 (2009)。00 6. Hirvonen, LM 等人。活细胞的结构化照明显微镜检查。欧洲生物物理杂志 38 , 807–812 01 (2009)。02 7. Guo, Y. 等人。在毫秒时间尺度上以纳米级分辨率可视化细胞内细胞器和细胞骨架相互作用。Cell 175 , 1430-1442 (2018)。04 8. Huang, X. 等人。使用 Hessian 结构化照明显微镜实现快速、长期、超分辨率成像。自然生物技术 36 , 451–459 (2018)。 06 9. Chu, K. 等人。低信号水平结构照明显微镜的图像重建。Opt. 07 Express 22 , 8687-8702 (2014)。08 10. Wen, G. 等人。通过点扩展函数工程实现高保真结构照明显微镜。09 Light Sci Appl 10 , 70 (2021)。10 11. Jin, L. 等人。深度学习使结构照明显微镜具有低光照水平和更快的速度。Nat Commun 11 , 1934 (2020)。12 12. Qiao, C. 等人。用于光学显微镜图像超分辨率的深度神经网络的评估和开发。Nat Methods 18 , 194–202 (2021)。 14 13. Kobler, E. 等人。线性逆问题的总深度变分。CVPR,7546-7555(2020 年)。15 14. S. Bhadra。等人。断层扫描图像重建中的幻觉。IEEE 医学成像学报 40,3249-3260(2021 年)。17 15. Jakobs, S. 和 Wurm, CA 线粒体的超分辨率显微镜。化学生物学最新观点 20,9-15(2014 年)。19
目的。我们为 X 射线照射吸积盘的宽带光谱能量分布 (SED) 开发了一种新的物理模型,该模型考虑了吸积盘和 X 射线冕的相互作用,包括由中心黑洞 (BH) 的强引力对光传播和光子能量从盘到冕静止坐标系或从冕静止坐标系到观察者的转换引起的所有相对论效应。方法。我们假设一个开普勒光学厚、几何薄的吸积盘和一个灯柱几何中的 X 射线源。X 射线冕发射各向同性的幂律类 X 射线谱,具有高能截止。我们还假设标准盘模型最内层热辐射释放的所有能量都被传输到冕,从而有效冷却该区域的盘。此外,我们还包括由于 X 射线源对圆盘照明的吸收部分进行热化而导致的圆盘加热。还包括由于圆盘照明而导致的 X 射线反射。X 射线光度由从吸积盘(或外部源)提取的能量和散射光子本身带来的能量给出,因此能量平衡得以保持。我们通过迭代过程计算了低能 X 射线截止,充分考虑了圆盘的 X 射线照明与进入日冕的吸积盘光谱之间的相互作用。我们还计算了日冕半径,考虑到康普顿化过程中光子数的守恒。结果。我们详细讨论了模型 SED 及其对系统参数的依赖性。我们表明,圆盘-日冕相互作用对产生的 SED 有深远的影响,它限制了 X 射线光度并改变了 UV 蓝色凸起的形状和正常化。我们还将模型 SED 与目前可用的类似模型预测的 SED 进行比较。我们使用新代码来拟合 NGC 5548 的宽带 SED,这是一个典型的 Seyfert 1 星系。当与之前模型拟合同一源的光学和紫外线时间滞后的结果相结合时,我们推断出黑洞自旋较高、系统倾角中等、吸积率低于爱丁顿的 10%。该源的 X 射线光度可能由圆盘中耗散的 45-70% 的吸积能量支持。新模型名为 KYNSED ,可供公众使用,用于在 XSPEC 光谱分析工具中拟合 AGN SED。结论。 AGN 吸积盘的 X 射线照射可以解释至少一个 AGN(即 NGC 5548)观测到的 UV 和光学时间滞后以及宽带 SED。过去几年中,我们利用多波长、长期监测观测同时研究了这些 AGN 的光学、UV 和 X 射线光谱和时间特性,这将使我们能够研究这些系统中的 X 射线和吸积盘几何形状,并限制其物理参数。
1地球科学研究所(IGEO,CSIC-UCM),西班牙2号马德里大学(UCM),地球物理与天体物理学系,马德里,马德里,3大学3号大学Libre de Bruxelles(ULB)德国波茨坦
装配线工艺规划通过将设计信息转换为装配集成序列,将产品设计和制造连接起来。装配集成序列定义了装配过程中飞机系统部件的安装和测试优先级。从系统工程的角度来看,此活动是复杂系统集成和验证过程的一部分。在本文中,现代飞机的复杂性是通过根据能量流、信息数据、控制信号和物理连接对飞机系统相互作用进行分类来定义的。在装配线规划的早期概念设计阶段,优先任务是了解这些产品复杂性,并生成满足设计系统功能和设计要求的安装和测试序列。本研究提出了一种考虑物理和功能集成的初始装配工艺规划新方法。该方法利用基于可追溯RFLP(需求、功能、逻辑和物理)模型的系统工程概念定义飞机系统交互,并通过结构化方法生成装配集成序列。所提出的方法在工业软件环境中实施,并在案例研究中进行了测试。结果显示了所提出方法的可行性和潜在优势。关键词:飞机系统装配,装配工艺规划;复杂系统集成;RFLP建模
与导航、航空和飞行操作相关的各种天线的校准和检查一直是 FAA 和 DoD 等机构面临的巨大挑战。这些天线包括地面和机载组件。地面基础设施的天线系统包括 VOR/LOC、TACAN/DME 和下滑道等导航辅助系统,以及地面监视雷达。安装在飞机上的天线包括各种航空探测天线和机载雷达。飞行检查任务需要精确测量任何设施周围位置的信号功率。为了实现精确的雷达功能,还需要校准安装在飞机上的机载雷达天线。然而,困难在于飞机机身和环境对信号测量质量有重大影响,而信号测量质量通常很难表征。这项工作重点关注机身如何影响典型的航空天线测量,以及“规范化”这种影响以获得所需“有效”辐射模式的可能方法。我们主要依靠计算电磁 (CEM) 工具来建立飞机相对于不同简化天线模型的物理散射模型,然后通过实际飞行测试数据收集验证辐射模式。模拟和飞行测量之间的初步比较揭示了飞机装置上辐射模式的一些有趣行为、复杂飞机操作中的进一步电磁兼容性问题以及未来使用无人机系统 (UAS) 自动化测量程序的潜力。
左心室刚度和收缩力,其特征是末期压力 - 卷卷关系(EDPVR)和末端的2骨压力 - 卷量关系(ESPVR),是人心脏表现的两个重要指标。尽管已经对EDPVR和ESPVR进行了大量研究,但是没有介绍具有结合两种关系的物理解释参数的模型,从而损害了对心脏生理和病理学的理解。在这里,我们提出了一个模型,该模型在统一框架中对参数进行物理解释评估EDPVR和ESPVR。我们的基于物理的模型拟合了可用的实验数据,并且在计算机结果中非常符合现有模型的表现。带有规定的参数,新模型用于预测左心室的压力量关系。我们的模型对心脏力学有了更深入的了解,因此将在心脏研究和临床医学中应用。
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
为了在高维空间中实现项目的目标,这项工作将利用域分解技术,特别是Pinn-PGD [2],以识别缺失的偏微分方程(PDE)项。此方法可以增加物理模型,从而通过求解修改后的PDE进行后续验证。该方法在源自非线性模型的数据上显示,而假定已知的物理模型是线性的。结果展示了提出的技术如何用非线性术语对线性模型进行补充,以发现原始的非线性公式。所提出的方法可用于表征船只与物理测量的结构建模的偏差,并增强原始材料建模公式。