PHELIQS 在创新块体材料(主要是晶体)和纳米结构(半导体纳米线和量子点、石墨烯单层、高迁移率锗异质结构和其他二维材料)合成的仪器和方法方面拥有丰富的专业知识。该实验室还拥有用于设备制造的先进洁净室技术。PHELIQS 开发了定制的高性能仪器,用于极端条件下的物理测量(低至 10 mK 的低温、大磁场、高压)或需要超高灵敏度(单光子级光学研究、扫描隧道显微镜和光谱、具有任意波生成的 RF 操纵以及单次级反射读数)。PHELIQS 还利用其在凝聚态物理(超导性、磁性、强关联电子系统)以及量子和介观物理方面的强大理论专业知识,并处于量子凝聚态物理“计算机辅助”理论新代码开发的最前沿。
PHELIQS 在合成创新块体材料(主要是晶体)和纳米结构(半导体纳米线和量子点、石墨烯单层、高迁移率锗异质结构和其他二维材料)的仪器和方法方面拥有丰富的专业知识。该实验室还拥有用于设备制造的先进洁净室技术。PHELIQS 开发了定制的高性能仪器,用于在极端条件下(低至 10 mK 的低温、大磁场、高压)或需要超高灵敏度(单光子级光学研究、扫描隧道显微镜和光谱、具有任意波生成的 RF 操纵以及单次级反射读数)进行物理测量。此外,PHELIQS 利用其在凝聚态物理学(超导、磁性、强关联电子系统)以及量子和介观物理学方面的强大理论专业知识,在量子凝聚态物理学“计算机辅助”理论新代码开发方面处于领先地位。
10。将波功能作为状态解释,而Hermitian操作员是量子力学中的物理测量。11。解释与波函数线性叠加相关的概率解释。12。能够从系统的波函数中计算物理测量的期望和差异。13。解决了给定潜在函数的时间无关的schrodinger方程给出的特征值问题。14。解释谐波振荡器的解决方案。15。解释氢原子的溶液。16。通过Stern-Gerlach实验解释“自旋”的概念和结果。17。分析自旋轨道相互作用和氢能水平。18。解释量子力学的狄拉克符号。19。在量子力学中执行矩阵和矢量操作,例如:向量的归一化,特征值和特征向量的计算。20。解释量子力学的基质形式主义及其与量子力学的波函数方法的关系。
摘要。本文重点关注重要元素,即工作站的适当照明条件和主观生产力评估,这些因素与室内环境参数有关,并以凯尔采工业大学智能建筑“Energis”的学生为例,进行了一项实验研究。一组志愿者完成了关于他们在一年中不同时间对演讲厅照明条件的主观感受的问卷调查,并评估了他们当前的生产力。使用高精度微气候计对照度进行了精确的物理测量。将房间用户的陈述与测量结果进行比较,可以得出有关智能建筑中与照明相关的条件以及工作环境对房间用户生产力的影响的结论。这些研究结果为现代智能建筑的照明条件提供了宝贵的信息,这些建筑在世界各地越来越普遍,用于各种用途,例如办公、教育和其他公共建筑,以便可以使用适当的室内条件来优化生产力和效率。
摘要X射线光电子光谱(XPS)分析技术已广泛应用于半导体制造和故障分析。我们将其用于晶圆制造中的缺陷分析和薄膜表征,并将其用于铜材料的XPS价状态分析。XPS技术也与TOF-SIMS技术共同应用。在晶圆厂,半导体和LED制造中,测量纳米仪范围内超薄膜的厚度非常具有挑战性。通常,TEM被广泛用于超薄薄膜物理测量,但通常其横向尺寸受到限制。在本文中,我们将研究X射线光电子光谱分析技术,该技术采用角度分析技术采用新的分析方法。此外,我们还将新方法应用于Sion膜的分析。在约1.4nm处测量超薄薄膜是实现的。此方法可用于SIO 2厚度测量,在AU上进行自组装的硫醇单层和硅底物上HFO 2的厚度。
使用生物医学大数据的核心是一个数据库,用于存储和管理生物和人类的生物学和物理测量。数据库有各种形状和大小,可以结构化(例如MySQL和Oracle),半结构(例如Neo4J和MongoDB)或未经验证(例如,Amazon S3和Google Cloud Storage)。这些数据库选项中的每一个都有优点和缺点。例如,可以使用诸如结构化查询语言(SQL)之类的工具轻松查询结构化的关系数据库,但可以为新数据元素进行设置和修改。半结构化和非结构化数据库更加灵活,但很难查询。在生物医学DO-MAIN中确定数据库解决方案可能会具有挑战性,因为数据具有许多不同的方式可能非常复杂。可以结构或非结构化的不同方式,这可能会为数据处理,数据输入,数据集成,数据库设计以及当然构建强大的查询构成挑战。
物理学通常被视为一门令人生畏的抽象学科,其中许多主题都不容易与公众沟通和理解。然而,声音科学及其感知/再现是打破与普通观众僵局的有效方法。尽管音频再现已经存在了一个世纪,但由于缺乏严谨的科学基础,人们对其的了解仍然少得惊人,而且充斥着许多有争议的说法。因此,消费者音频系统通常与现场音乐相去甚远。然而,甚至许多音乐和音频专业人士都不知道,有一种被称为“高端音频”(HEA)的机制,可以在三维空间中实现对乐器的惊人逼真的描绘。Kunchur 博士的研究通过开发敏锐的物理测量、灵敏的心理物理测试以及对听觉神经生理学和记忆层次的定量理解,揭开了 HEA 的神秘面纱。这项工作需要将声学物理学、音乐学、听觉生物学、神经科学、心理学和工程学等多个学科结合起来。
backgroun d:在撒哈拉以南非洲,2型糖尿病护理受到巨大的财务负担极大地阻碍了医疗保健的可及性。这项研究确定了在尼日利亚实现可持续发展目标(SDG)目标3和17的潜力的遗传和环境因素。方法论:这项研究是一项病例对照研究。在尼日利亚西南部的1500例T2DM和1500例对照患者中,采用了一种多阶段抽样技术。生物物理测量和血糖生物标志物。的优势比(OR)以p <0.05的结果设置:2型DM的患病率为5%。与城市社区p <0.01相比,农村社区患有T2DM的较旧受试者。在农村和城市社区中,血糖生物标志物和生物物理谱是年龄和与性有关的P <0.05。转录因子7(例如2(TCF7L2))是T2DM的遗传标记。结论:转录因子7(类似2基因)是尼日利亚T2DM的遗传标记,它构成了实现目标3和17的框架
以上内容可能对许多读者来说并不奇怪,但我们可以更进一步——如果信息用比特来表示,那么“什么是比特?” 上面我们将其与布尔变量联系起来,这是一个抽象的数学概念。但这不能是我们的答案,因为当我们获取信息时,我们需要真正接收“一些真实的东西”,而不仅仅是接受一个抽象的数学概念。这里的关键点很好地表达在以下引言中(R. Landauer 1996)“信息不是一个无形的抽象实体;它总是与物理表示相关”。事实上,布尔值 0 和 1 仅用于提供两个可识别的不同标签。所以我们对“什么是比特?”的回答是:比特由任何两个不同的物理状态(某个物理系统的)给出,这两者可以通过物理测量可靠地区分。布尔值 0 和 1 只是页面上两种可区分的物理墨水模式;当我们提出问题并听到“是”或“否”时,我们只是将耳朵用作物理设备来区分空气中两种不同的声波形式;在计算机内存中,比特可以用材料中的两种不同电压电平来表示。这里的关键信息是:“没有表示就没有信息!”
摘要 从激光雷达数据中得到的冠层高度模型 (CHM) 已被用于提取森林资源清查参数。然而,建模高度的变化会导致数据凹陷,这是一个具有挑战性的问题,因为它们会破坏 CHM 的平滑度,对树木检测和随后的生物物理测量产生负面影响。这些凹陷出现在激光束深入树冠的地方,在产生第一次回波之前,激光束会击中下部树枝或地面。在本研究中,我们开发了一种新算法,该算法通过使用激光雷达点的子集来封闭凹陷,从而生成无凹陷的 CHM 栅格。该算法在高密度激光雷达数据和细化激光雷达数据集上都能稳定运行。评估包括使用无凹陷 CHM 检测单棵树木,并将结果与使用高斯平滑 CHM 的结果进行比较。结果表明,我们从高密度和低密度激光雷达数据中得到的无凹陷 CHM 显著提高了树木检测的准确性。