在1984年,沃恩·琼斯(Vaughan Jones)[琼斯5]发现了康威(Conway)绞线的一种变体,这引起了一个新的不变,现在称为琼斯多项式。琼斯通过研究用于统计力学中的代数为templeley-lieb代数的代数的特性,发现了他的不变。他从自己对von Neumann代数的深入研究中重新发现了Temperley-Lieb代数,与量子力学密切相关,Jones Construction被HOM FLOP概括了。这是Hoste,Ocneanu,Millett,Freyd,Lick-Orish,Yetter,Przytycki和Trawczk的首字母缩写。这些数学家听到了琼斯的早期讲座。他们发现了琼斯多项式的两个可变概括,当然被称为hom fl ypt ypt多项式。琼斯表明,他的新多项式满足了类似于康威(Conway)关系的绞线关系。他证明了
将稀释的需要二氮浓度掺入传统的III – V合金中会产生带隙能量的显着减少,从而在菌株和带隙工程中带来了独特的机会。然而,宿主基质的理想生长条件与替代二氮的理想生长条件之间的差异导致这些III – V – BI合金的材料质量落后于常规III – V半导体的材料。INSB 1 x BI X虽然在实验上尚未进行,但由于INSB和III – BI材料的理想生长温度相对相对相似,因此是高质量III – V – BI合金的有前途的候选者。通过识别高度动力学上有限的生长状态,我们通过分子束外延展示了高质量INSB 1 x BI X的生长。X射线衍射和Rutherford反向散射光谱法(RBS)测量合金的二晶浓度,并与光滑的表面形态结合,通过原子力显微镜测量,表明Unity-sticking Bismuth掺入了从0.8%到1.5%到1.5%的bismuth浓度,均为0.8%至1.5%。此外,从INSB 1 x BI X中观察到了第一次光致发光,并在230 K时显示了高达7.6 L m的波长延伸,二匹马诱导的带隙还原为29 MeV/%bi。此外,我们报告了INSB 1 x BI X的带隙的温度依赖性,并观察到与传统III – V合金相一致的行为。提出的结果突出了INSB 1 x BI X作为访问Longwave-Infrared的替代新兴候选者的潜力。
我们的几位教员获得了新的联邦拨款,这些拨款对我们的研究和教学任务一直非常重要。您将在本通讯中找到这些拨款的详细信息。但我想在这里简要提及其中一项拨款。田继发教授和他的同事获得了一项重大 NSF 拨款,名为“ExpandQISE:Track 2:开发量子信息科学和工程研究和教育项目,研究局部可调二维拓扑超导体”。这是一项为期 5 年的奖项,用于在华盛顿大学开展量子信息科学和工程工作,总额为 500 万美元,其中 150 万美元将用于普渡大学的合作者。该项目的共同 PI 是:TeYu Chien、Suresh Muknahallipatna(计算机科学)、Yuri Dahnovsky 和 Jinke Tang。我们继续从大大小小的慷慨捐助者那里收到礼物和捐款。
,田金大学理科学院,天津,天津300350,中国b理论上的量子物理实验室,瑞肯,西塔玛351-0198 Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain e Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland f Center for Quantum Computing, RIKEN, Wako-shi, Saitama 351-0198, Japan g Physics Department, The密歇根大学,安阿伯,密歇根州安阿伯市48109-1040,美国H Tianjin低维材料物理和制备技术的主要实验室,天津大学,天津300350,中国,田金大学理科学院,天津,天津300350,中国b理论上的量子物理实验室,瑞肯,西塔玛351-0198 Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain e Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland f Center for Quantum Computing, RIKEN, Wako-shi, Saitama 351-0198, Japan g Physics Department, The密歇根大学,安阿伯,密歇根州安阿伯市48109-1040,美国H Tianjin低维材料物理和制备技术的主要实验室,天津大学,天津300350,中国,田金大学理科学院,天津,天津300350,中国b理论上的量子物理实验室,瑞肯,西塔玛351-0198 Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain e Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland f Center for Quantum Computing, RIKEN, Wako-shi, Saitama 351-0198, Japan g Physics Department, The密歇根大学,安阿伯,密歇根州安阿伯市48109-1040,美国H Tianjin低维材料物理和制备技术的主要实验室,天津大学,天津300350,中国
物理学生物学系在2023-2024学年中幸存下来,并带来了鲜艳的色彩。该部组织了一次国际材料科学会议和一项关于实验天文学的国家研讨会,以促进物理学研究工作。部门组织了七位客座讲师,在各个物理学分支机构工作的资源人员都激发了学生的发展,并向他们解释了物理学的发展和机会。为学生组织了两次对Cecri,Karaikudi和太阳能天文台,Kodeikanal和Thumba Rocket发射台的教育之旅的工业访问。物理学系的学生通过物理协会组织了六项教育活动,其中包括一场内部竞争竞赛内部 - 2023年和一项大学间物理竞赛Physaac - 2024年,以认可学习物理学的乐趣和快乐。基于载体的特殊讲座和面向载体的计划通过物理部门提供,其中许多来自该系的学生以及学院的其他部门受益。特别是在Arul Anandar学院的PG&Research系Arul Anandar College,M。Antony博士的PG&Research系提供了“手机硬件技术员”的增值课程,