近年来,数字孪生已成为现代信息物理系统 (CPS) 中活跃的研究领域之一。数字孪生与其物理对应物(称为工厂)高度交织在一起,因此它们不断交换数据以揭示有关整个系统的有用信息。这类 CPS 需要对各种类型的干扰(例如故障传感器和模型差异)具有鲁棒性,因为物理工厂的运行与数字孪生的模拟之间的相互作用可能会导致不良甚至破坏性的影响。为了解决这个问题,本文介绍了一种灵活的异常检测框架,用于监控基于数字孪生的 CPS 中的异常行为。具体而言,我们的方法集成了数字孪生和数据驱动技术,可检测和分类由于建模错误(例如不完整的模型)以及传感器和物理系统故障而导致的异常行为。该框架可以部署到任何通用 CPS,而无需完全了解数字孪生的内部模型。因此,我们的方法适用于各种类型的数字孪生实现,从而增强了传统的数据驱动异常检测机制。我们使用田纳西伊士曼过程模型展示了我们方法的性能。实验结果表明,即使在某种组合的情况下,我们的方法也能够有效地检测和分类来自物理工厂、传感器和数字孪生的异常源
• 对 HJ Pain 所著《振动和波的物理学》第 6 版的希腊语译本进行科学编辑(与 Alexopoulos Th.、Raptis I. 和 Tsipolitis G. 合作)。古腾堡出版物,2020 年,ISBN 978-960-01-2151-3 • 风能 C。 Lefteriotis,帕特雷大学出版物,2010 年及之后。可再生能源课程教学注意事项•可再生能源实验室。页。詹诺利斯,G.阿塔纳苏利斯,I. Trypanagnostopoulos,G. Lefteriotis,A.卡赞齐迪斯帕特雷大学出版物,2010 年及以后。实验教学和实验练习的笔记。 • 非物理实验室练习。 C.左撇子属帕特雷大学出版物,2012 年。实验教学和实验练习的笔记。 • 流体力学。 C.左撇子属研究生课程环境物理学教学说明(物理系“能源与环境”研究生课程第一学期)。 • 材料的光学特性。 C.左撇子属研究生课程《能源材料与氢能技术》(物理系“能源与环境”研究生课程第一学期)的教学说明,以及
斯里文卡特斯瓦拉大学物理系将于 2023 年 8 月 9 日至 10 日举办为期两天的先进材料、设备和技术国际会议 (ICAMDT-2023)。ICAMDT-2023 涵盖先进材料、设备和技术的最新发展,这些发展将影响几乎所有科学和技术领域。会议的主要目标是汇集来自学术界、国家实验室和工业界的科学家和工程师,讨论先进材料、设备和技术的最新发展,并探索在以下领域解决新出现的问题的合作可能性:1.生物材料和生物电子学2.陶瓷、电介质和铁电材料3.无序材料4.磁性材料和自旋电子学5.发光材料和装置6.光纤通信材料7.空间应用材料8.微机电系统9.纳米材料和纳米电子学10.纳米光子学11.光电材料和器件12.聚合物和有机材料13.半导体14.传感器和其他设备15.固态离子材料和装置16.薄膜和相关技术会议将以混合模式举行。
摘要:我们提出了一个用于建模信息物理控制系统中攻击场景的新颖框架:我们将信息物理系统表示为一个受约束的切换系统,其中单个模型嵌入了物理过程的动态、攻击模式和攻击检测方案。我们证明,这与混合自动机(即受约束的切换线性系统)中已建立的结果兼容。所提出的攻击建模方法允许大量非确定性攻击策略,并能够将系统安全性表征为渐近性质。通过计算最大安全集,由此产生的新影响指标可以直观地量化安全性的下降以及网络攻击对受攻击系统安全属性的影响。我们通过一个示例展示了我们的结果。
提示:您已经实现了该电路的两个关键元素:贝尔态的准备和贝尔基中的测量。然而,第三个元素存在问题:Bob 的量子比特 q 2 的变换依赖于贝尔测量的结果(书中表 2.3)。据我所知,Quantum Composer 不允许这样的条件操作。有两种方法可以解决这个问题。一种方法是使用 Qiskit——IBM 用于处理其量子计算机的开源 SDK,它可以作为 Python 包下载,并允许构建复杂且完全定制的量子电路。欢迎您自行探索。另一种方法是仍然使用 Composer,但将 Bob 的量子比特所需的变换实现为量子条件操作。请注意,c 相门和 c 非门可以分别解释为当控制量子比特处于状态 | 时应用于目标量子比特的 ˆ σ z 和 ˆ σ x 算子。 1 ⟩ 。你可以将 q 0 ⊗ q 1 从贝尔基变换为正则基,依据 Ψ − →| 00 ⟩ ; Ψ + →| 10 ⟩ ; (4) Φ − →| 01 ⟩ ; Φ + →| 11 ⟩ ,利用此性质。
PH401:数学物理 I (2-1-0-6) 线性代数:线性向量空间:对偶空间和向量、柯西-施瓦茨不等式、实数和复数向量空间的定义、度量空间、线性算子、子空间;跨度和线性独立性:行减少和方法;基础和维度:使用简化的跨度和独立性测试 (RREF) 方法;线性变换:图像、核、秩、基础变换、转移矩阵、同构、相似变换、正交性、Gram-Schmidt 程序、特征值和特征向量、希尔伯特空间]。张量:内积和外积、收缩、对称和反对称张量、度量张量、协变和逆变导数。常微分方程和偏微分方程:幂级数解、Frobenius 方法、Sturm-Liouville 理论和边界值问题、格林函数;笛卡尔和曲线坐标系中不同波动方程的分离变量法,涉及勒让德、埃尔米特、拉盖尔和贝塞尔函数等特殊函数以及涉及格林函数的方法及其应用。教材:
摘要:随着分布式能源(DER)的出现及其相关的通信和控制复杂性,需要一个高效的平台来消化所有传入数据并确保电力系统的可靠运行。数字孪生(DT)是一个新概念,可以释放巨大的机遇,可用于电力系统的不同控制和安全级别。本文提供了一种用于多种应用的能源信息物理系统(ECPS)实施建模的方法。介绍了两种 DT 类型,以涵盖需要集中监督决策的高带宽和低带宽应用。使用 Amazon Web Services(AWS)作为云主机验证和测试数字孪生的概念,该云主机可以整合物理和数据模型,并能够从不同的实际电力和控制实体接收实时测量值。实验结果证明了基于物联网 (IoT) 和云计算技术实时实现 ECPS DT 的可行性。低带宽 DT 情况下的归一化均方误差为 3.7%。在高带宽 DT 的情况下,所提出的方法在重建电压估计方面表现出色,仅从控制器的状态来看准确率就达到 98.2%。
背景:信息物理系统对测试人员提出了挑战,为安全关键和协作环境带来了复杂性和规模。数字孪生通过与物理系统耦合的数据驱动和基于模拟的模型增强了这些系统,以提供可视化、预测未来状态和通信。由于数字世界和物理世界之间的耦合,数字孪生为信息物理系统测试提供了一个新的视角。 目标:本研究的目的是总结现有的基于数字孪生的测试文献。我们旨在发现新兴的采用领域、这些领域中使用的测试技术并确定未来的研究领域。 方法:我们进行了系统的文献综述,回答了以下研究问题:数字孪生目前用于测试哪些信息物理系统?如何为信息物理系统定义测试预言?在测试环境中,用于数字孪生的白盒、黑盒和灰盒建模技术的分布情况如何?如何定义测试用例以及这会如何影响测试输入?结果:我们通过精心挑选的搜索查询从 480 项研究中发现了 26 项相关研究。这些研究表明,在数字孪生引入行业后,人们开始采用基于数字孪生的测试,并且该技术的可访问性不断提高。测试中使用的预言机就是数字孪生本身,因此依赖于这两个系统