摘要:相对论量子计量学研究在考虑量子和相对论效应的情况下估计物理量的最大可实现精度。我们研究 (3+1) 维德西特和反德西特空间中温度的相对论量子计量学。使用与无质量标量场耦合的 Unruh-DeWitt 探测器作为探针,并将它们视为开放量子系统,我们计算用于估计温度的 Fisher 信息。我们研究了加速度在 dS 中的影响以及边界条件在 AdS 中的影响。我们发现两个时空中 Fisher 信息的现象学可以统一,并分析了它对温度、探测器能隙、曲率、相互作用时间和探测器初始状态的依赖性。然后,我们确定了最大化 Fisher 信息并因此提高估计精度的估计策略。
“熵”是一种在科学和数学多个领域中用于量化对复杂系统缺乏知识的概念。在物理学中,其最常见的形式是热力学熵,它描述了大型物理系统的微观构造或“微晶格”的不确定性。在被称为信息理论的数学领域,信息熵(也称为Shannon熵在其发明家C. Shannon之后)描述了有关传输信息的内容的不确定性。20世纪理论物理学中最深刻的发展之一是E. T. Jaynes的发现,即可以根据信息理论提出统计力学。因此,基于热力学和基于信息的熵概念是相同的。有关此连接的详细信息,请参见Jaynes(1957)和Jaynes(1957a)。本附录总结了古典物理学中熵的定义,以及它与其他物理量的相关性。
CO5:说明使用离散傅里叶变换(DFT)对信号进行分析。CO6:说明使用 Z 变换对信号进行分析。20MTAI233 传感器技术 CO1:描述物理量和人为错误。CO2:识别传感器的测量特性。CO3:在实际应用中使用传感器的静态和动态特性。CO4:剖析工业中嵌入式传感器的特性。CO5:说明传感器在实时系统中的应用。CO6:使用传感器技术开发智能应用程序。20MTAI241 云 Web 服务 CO1:识别各种云服务。CO2:讨论在云上以不同部署模型提供各种 IT 服务。CO3:根据给定的服务需求推荐最佳 Web 服务。CO4:比较和对比各种云 Web 服务。
电力在日常生活中无处不在 - 每个家庭都会定期收到电费账单。然而,开具发票的“货物”不是电力,而是供应的电能,用于照明、加热、冷却或机械工作。当我们谈论电流时,我们通常指的是该电流的强度,即电流这个物理量。这被定义为每个时间间隔流过电导体横截面的电荷量除以时间间隔的长度。要测量电流强度并定义相应的物理单位安培,可以使用电流的各种效应,历史记录表明:如果将电流通过金属盐溶液,对于例如,金属离子被排出并且金属沉积在阴极上。直到20号中旬19世纪,电流强度的单位就是根据这样的电解过程定义的。这个所谓的国际安培也是根据1898年德国帝国法定义的,其措辞如下:
示例 - 在机场的优化是具有量子优势的用例,慕尼黑机场的QAR-LAB已经确定了门分配问题(差距,优化问题,将飞行证人分配给门口)。在小规模上,我们使用QAOA对D-Wave系统的量子退火硬件以及公司Rigetti和IBM公司的量子计算机进行了建模和执行。对于2号航站楼机场的生产运营,根据QUBO建模计算了12,500 QUAT。这应该是逻辑Qubit,Google 2假设其超导技术需要1,000个物理量子来实施逻辑Qubis,麦肯锡3个名字1,000-10,000,这是技术特定技术的。与Tu Delft合作,我们考虑如何有效地进行误差校正,因此需要少于10 3-10 4的物理量子。此外,连贯性时间为
冰从[15]产生任何霜冻时产生键反照率。这些地图中的每个地图都经过汇总和划分平均,以创建一组查找表,使我们能够在每个时间步骤和位置(包括表面,地下和大气温度)计算所有相关的物理量;表面压力;和凝结的质量。通过首先忽略潜在热项来计算凝结的质量。如果发现表面温度降低到霜点以下,则该模型将根据沉积的潜在沉积热来计算从大气中凝结的数量,以将表面温度移回霜点。我们通过将单层,多散射气氛模型与我们的表面/地下模型耦合,来解释季节性沙尘暴对全球能量平衡的影响。该模型使用尘埃深度数据[14]来计算太阳辐射散布并被大气吸收后的入射表面通量。
摘要通常是各种物理量的预期值,例如占据某些状态的电子数量或不同电子状态之间的库仑相互作用,可以用积分来表示。相比之下,我们的方法基于差异形式,表明可以通过平均时间来获得期望值。确认我们方法的有效性,我们准备了两种情况:一个是一个非常简单的情况,没有多体相互作用,另一种是包含多体项的情况(最简单的安德森·哈密顿式)。关于简单的情况而没有包含多体项,我们可以分析地证明,占据从我们方法得出的任何状态的电子数量等同于从绿色功能方法中评估的分析。包括多体项时,我们的结果显示了与绿色功能方法得出的分析方法的良好数值一致。通过两种情况,基于我们方法的预期值计算被认为是有效的。
如果我们想象我们用来观察物质分子结构的显微镜具有可变焦距,我们就可以把对物质的观察从精细的微观视角转变为更长距离的宏观视角,在这种视角中,我们看不到分子之间的间隙,物质看起来是连续分布的。我们将从宏观角度来看待流体,其中与给定体积 V 内的流体相关的物理量被假定为连续分布,并且在足够小的体积 V 内均匀分布。这种观察被称为连续体假设。这意味着在流体的每个点,我们可以规定一个唯一的速度、一个唯一的压力、一个唯一的密度等。此外,对于连续或理想流体,我们可以将流体粒子定义为包含在一个无限小体积内的流体,该体积非常小,可以被视为一个几何点。1.1. 应力:两种类型的力作用于流体元素。其中之一是
加密协议是一种抽象或具体的协议,它执行与安全相关的功能并应用加密方法 [b-Dong],正如本报告所示,QKD 协议 [b-ITU-T X.1710] 具有加密协议的特征。QKD 协议可以被视为一种密钥建立协议,其中两个远程方按照分步程序协商秘密对称密钥,其中每一步都与安全性有关。与基于算法的传统解决方案不同,QKD 协议需要使用专用硬件通过物理通道传输量子态,并使用软件对经典信息进行后处理以输出随机位作为密钥。从这个意义上讲,QKD 协议也可以被视为一种通信协议,其中通信协议是一套规则系统,允许通信系统中的两个或多个实体通过任何类型的物理量变化来传输信息 [b-Popovic]。本技术报告旨在介绍 QKDN 背景下的 QKD 协议,并提供一些标准化观点。
基础量子力学(BQM):11. 在量子力学的背景下解释算子、状态、特征值和特征函数这些术语(首先针对双态系统,然后扩展到具有连续特征值的系统),并确定物理量的期望值和不确定性。12. 确定给定势阱(例如无限势阱和屏障)中粒子的波函数,并列举其在技术中的应用示例(例如量子点显示器、存储设备)。13. 使用特征函数的正交性并对叠加中的量子系统进行基本分析。14. 讨论量子现象(例如量子叠加、波函数坍缩、量子隧穿和海森堡不确定性原理),并解释它们与我们对现实的感知的冲突。15. 使用氢原子的量子数:n、l、m 确定相应的特征函数(来自给定的表格)并解决相关的简单问题。课程内容 基础(FND) 波的性质 光速 叠加、衍射和干涉 原子和亚原子粒子 狭义相对论(SR) 参考系和伽利略变换 狭义相对论和洛伦兹变换的假设 长度收缩和时间膨胀 闵可夫斯基时空图 解决悖论 相对论动量、动能和能量 基础核物理(BNP) 放射性粒子(𝛼,𝛽 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑎𝑛𝑑 𝛾−𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛) 核裂变和聚变 放射性 质能当量 医学应用和剂量 量子物理(QP) 黑体辐射物理量的量化光电效应康普顿散射和波长对的产生/湮没双缝实验戴维森-杰默实验波粒二象性氢原子(玻尔模型和原子光谱)基础量子力学(BQM)特征值、特征函数和算子两能级系统薛定谔方程和波函数概率(密度)无限和有限势阱(盒子中的粒子)量子谐振子势垒/台阶期望值和不确定性