“活性物质是由大量活性“剂”组成的物质,每种活性“剂”都会消耗能量来移动或施加机械力。这种系统本质上是不热平衡的。与趋向平衡的热系统和具有施加稳定电流的边界条件的系统不同,活性物质系统打破了时间反演对称性,因为能量被各个成分不断耗散。大多数活性物质的例子都来自生物,涵盖了生物的所有尺度,从细菌和自组织生物聚合物(如微管和肌动蛋白,两者都是活细胞细胞骨架的一部分)到鱼群和鸟群。然而,目前大量的实验工作致力于合成系统,如人造自推进粒子。活性物质是软物质中一个相对较新的材料分类:研究最广泛的模型 Vicsek 模型可以追溯到 1995 年。
如前所述,与热固物质系统相比,与基于PTFE的产品的电线键合可能很困难。毛细管在PTFE表面上的作用可能会产生“反弹”效果,从而使实现良好的纽带变得困难。PTFE是一种软基质,由于毛细管的压力可能会略微变形。在基于PTFE的层压板结合时,通常有必要增加时间并减少解决柔软性问题的力量。一种用于抵消此效果的另一种方法是增加板条垫下方的板条层。此方法存在一些风险。增加的镍板可能会变脆,从而导致毛细管撞击的破裂或微断裂。由于柔软的基板材料处理,由于填充了Ni/Au板条迹线或垫面积的微裂纹风险也增加了。通常需要在材料类型,电路设计和所使用的设备中独有的镀金金属平衡。
摘要:在凝结物质系统中拓扑非平凡状态的探索以及它们的新运输特性,具有显着的研究兴趣。本评论旨在从量子厅绝缘子的初步提案开始,对代表性拓扑阶段进行全面概述。我们从简洁的介绍开始,然后对第一阶拓扑量子阶段进行详细检查,包括间隙和无间隙系统,涵盖了相关材料和实验中相关现象。随后,我们深入研究了异国高阶拓扑量子相的领域,研究了理论命题和实验发现。此外,我们讨论了高阶拓扑结构出现的基础机制,以及在实验验证表现出此类特性的材料中所涉及的挑战。最后,我们概述了未来的研究方向。本综述不仅系统地调查了各种拓扑量子状态,从一阶到高阶,而且还提出了实现高阶拓扑阶段的潜在方法,从而为检测实验中相关量子现象的检测提供了指导。
近年来,表面声波(锯)已成为一种新型技术,用于在凝结物质系统中产生准粒子传输和带调节。锯子通过压电和应变场与相邻材料相互作用,沿波传播的方向拖动载体。大多数关于大声效应效应的研究都集中在载体的集体方向运动上,该方向产生了稳定的电势差,而动态空间电荷调制的振荡成分对于探测仍然具有挑战性。在这项工作中,我们报告了石墨烯中振荡大声效应的连贯检测。这是通过在跨胶质传感器发出的电磁波的时空电荷振荡的相干整流来实现的。我们系统地研究了整流信号的频率和门依赖性,并定量探测由锯驱动的载体重新分布动力学。观察振荡的大声电效应可直接访问通过传输实验引起的锯引起的动态空间电荷调制。
量子自旋液体是量子物质的外来阶段,尤其与许多现代冷凝物质系统有关。dirac自旋液体(DSL)是一类无间隙的自旋液体,它们没有准粒子描述,并有可能在2 d晶格上的各种自旋1/2磁系统中实现。尤其是,在低能量下,(2 + 1)d量子型动力动力学在低能量上描述了平方晶格旋转1 /2磁体中的DSL,N f = 4 f = 4个无质量的dirac fermions的风格,最少耦合到出现的u(1)球场。存在相关的,对称性允许的单极扰动使得正方形晶格上的DSL本质上不稳定。我们认为,DSL描述了熟悉的Neel相(或价键固体(VBS)相)内的稳定连续相变。换句话说,DSL是物质单阶段内的“不必要”量子关键点。我们的结果提供了方形晶格DSL的新型视图,即临界旋转液体可以存在于Neel或VBS状态本身内,并且不需要离开这些常规状态。
以越来越多的精度控制电子对于经典和量子电子既重要。自激光发明以来,驯化了连贯的光的每个属性,使其成为科学,技术和医学最精确的工具之一。连贯的控制涉及将光的精美定义特性转导向电子系统,从而将连贯性赋予其组成电子的属性。相干控制中的早期开发利用了高斯激光束和空间平均测量。激光的空间结构和轨道角动量为凝结物质系统中的电子和准粒子激发提供了额外的自由度。从这个角度来看,我们首先介绍了半核对器中相干控制的概念。然后,我们继续讨论结构化光束在相干控制中的应用以及对空间分辨出术检测的要求。随后,我们介绍了使用圆柱矢量束和具有结构相位前部的激光束进行的最新实验的概述。最后,我们提供了这些发展和未来感兴趣的方向的视野。
自前苏格拉底时代以来,哲学上就一直传承着对空间和时间本质的思考。在近代,这种思考已成为自然哲学的一部分,其目的是用数学语言描述自然。随着时间的推移,出现了两种主要传统。一方面是牛顿所持的显著立场,称为实体立场,该立场认为空间和时间是它们自己的绝对实体,是一个物质在其中生存和相互作用的舞台[1]。另一方面是莱布尼茨所代表的关系传统,该立场认为空间和时间是物质系统之间新兴的度量关系[1]。可以公平地说,自这两位伟大的思想家提出他们的观点以来的所有发展都可以(或多或少)归因于其中一种传统。对青年爱因斯坦影响深远的哲学家马赫显然属于第二阵营,而讽刺的是,当今广义相对论的标准本体论却更接近第一阵营,它把能量等物理性质归于度量场,与量子力学有着显著的不同。
极性在具有强电子偶联的凝结物质系统中普遍存在。极性的绝热性与其传输特性和空间范围有关。迄今为止,仅在光激发后才测量绝热的小极极形成。晶格的重组能量足够大,以至于第一个电子 - 光学声子散射事件会产生一个小极极子,而无需大量的载体热融化。我们测量在稀土原氧化物Erfeo 3中以铁为中心的八面体的挫败导致抗脱绝热极性的形成。通过瞬态极端紫外线光谱法测量相邻的Fe 3 +位置之间的相干电荷跳跃,并持续几次粉红色。重新构成的小极极形成时间比以前的测量值长,即使在激发态下也表明浅势良好。结果强调了考虑动态电子电子相关性的重要性,而不仅仅是电子 - phonon诱导的晶格变化,用于转交,催化和光激发应用的小极地。
高纯度晶体固态材料在量子信息处理的各种技术中起着至关重要的作用,从基于旋转到拓扑状态的Qubits。每年出现新的和改进的晶体材料,并继续在实验量子科学方面取得新的结果。本文总结了基于旋转和拓扑状态以及与其制造相关的挑战的量子技术的选定晶体材料的机会。我们首先描述栅极定义的量子点和基准GAA,SI和GE中的自旋Qubit的半导体异质结构,这是三个表现为两个Qubit逻辑的平台。然后,我们检查了新型的拓扑非平凡材料和结构,这些材料和结构可能掺入超导设备中以创建拓扑量。我们回顾拓扑绝缘膜薄膜,然后移至拓扑结晶材料(例如PBSNTE)及其与Josephson交界处的整合。我们讨论了新颖和专业制造和表征技术的进步,以实现这些技术。我们通过确定最有希望的方向来得出结论,在这些方向上,这些物质系统中的进步将在量子技术方面取得进展。
van der waals(vdw)堆叠是一种强大的技术,可以通过逐层晶体工程在凝结物质系统中实现所需的特性。一个了不起的例子是控制人工堆叠的VDW晶体之间的扭角,从而实现了从超导性到强相关的磁性范围内的Moiré结构中非常规现象的实现。在这里,我们报告了VDW磁铁CRI 3晶体中不寻常的120°扭曲断层的出现。在去角质样品中,我们观察到厚度低于10 nm的垂直扭曲结构域。扭曲结构域的尺寸和分布在很大程度上取决于样品制备方法,而合成的未脱落样品显示出比去角质样品的厚域更厚的域。冷却引起不同扭曲结构域之间相对种群的变化,而不是先前假定的结构相过渡到菱形堆积。样品制造过程引起的堆叠障碍可能解释了CRI 3中观察到的未解决的厚度依赖性磁耦合。