摘要:这项研究引入了一种名为Genera的新型DE Nok Design算法,该算法将深度学习算法的能力结合在一起,用于自动化药物般的模拟设计,称为Dela-Drug,以及用于生成分子与所需目标靶向特性的遗传算法。具体而言,将属应用于血管紧张素转换酶2(ACE2)靶标,该靶标与包括Covid-19在内的许多病理条件中有关。使用两个对接程序,植物和滑行评估了属属从头设计有希望的特定目标候选者的能力。基于计算机植物和GLIDE评分产生的帕累托优势的适应性函数,以证明该算法有效地执行多目标优化的能力。属可以快速生成重点的库,这些库产生更好的分数。这项研究是第一个利用基于DL的算法,该算法专为模拟生成为GA框架中的突变操作员,代表了针对目标的创新方法。■简介
摘要:存储设备的控制在分布式交流微电网的稳定操作中起重要作用。提出了存储设备的多物镜分布二级控制方案。首先,为了维持频率和电压调节并确保比例的反应能力共享,采用了分布式共识方案,用于电池储能系统的运行。其次,为了延长电池的循环寿命,提出了一种改进的下垂控制策略与电荷平衡状态相结合,每个电池代理只需要与其在通信拓扑中的网络邻居共享信息。最后,建立了具有四个电池储能系统的岛AC微电网模型,模拟结果证明了提出的共识策略的有效性。
图 4。(A) 透射显微镜拍摄的黑白玻璃天鹅图像(比例尺:25 µ m)。(B) 透射显微镜拍摄的玻璃二元条、棋盘和圆环结构图像(比例尺:100 µ m)。(C) 和 (D) 黑色和黄色环形图案玻璃管和黑白玻璃管(比例尺:100 µ m)。(E) 带有集成黑色光圈的 3/4 双合和单合成像玻璃光学系统(比例尺:100 µ m)。(F) 集成增材制造玻璃物镜,包括管、支架、光阑和光圈(比例尺:100 µ m)。(G) (F) 中集成物镜的 SEM 图像。(H) 无光圈结构的全透明玻璃物镜的成像性能。(I) (F) 中所示的集成玻璃物镜的成像性能。(J) 图像中的红色和蓝色矩形标记用于对比度比较的区域。
不同瞄准镜之间的可见亮度差异是由多种因素造成的,但最重要的因素莫过于出瞳。人眼的瞳孔扩张范围从明亮阳光下的约 2 毫米到黑暗中的 7 毫米。为了充分发挥瞄准镜的潜力,出瞳需要与人眼的瞳孔扩张相匹配。10 倍放大倍数下的 40 毫米物镜将具有 4 毫米出瞳,面积为 12.6 平方毫米……非常适合清晨或傍晚拍摄。50 毫米物镜将使出瞳增加到 5 毫米,面积为 19.6 平方毫米。这意味着总光通量增加了 56%。在某些光学器件上,例如固定倍率 4x33mm,出瞳直径超过 8mm……您的眼睛被光线所笼罩,图像异常明亮。因此,大物镜的优势在于,它可以在更高放大倍数下增加出瞳直径。
注意:1。在最佳垂直焦点的位置测量。系统与交付的下限对齐。水平梁大小可以调整为上限。SYS TEM以减少或扩展水平焦点宽度。请参阅操作员的手册。2。从物镜组件的机械表面(输出端)测量。3。从标称梁轴测量。使用倾斜/偏航调整调整细胞内部,同时满足所有光学规格。4。假设距CellX输出面不到200 mm(光路径长度)内的物镜组件。5。使用望远镜调整CellX内部调整,同时满足所有光学规格。
本节详细阐述了用于我们的自旋轨道Qudit生成和检测的光学设置。发射器负责秘密密钥生成,如图S2A。 1064 nm纳秒脉冲激光器会产生泵浦脉冲(脉冲宽度约为10 ns)。 因此,泵浦脉冲是由SLM显示的相掩码(大约100 Hz)所显示的,然后通过物镜透镜(×20,NIR增强)聚焦在Ingaasp Microlaser芯片平面上。 通过相同的物镜准确地通过相同的物镜将1547 nm的自旋轨道光子准直并用二分色镜过滤。 由于来自两个空间分离的微孔的自旋轨光子起源,因此这些光子在准直时将有横向动量不匹配。 为了补偿这种不匹配,将由硅/二氧化硅二阶光栅制成的光束组合器放在芯片的傅立叶平面上。 来自两个环的1级衍射梁被合并为单个准梁,这是旋转轨道Qudits的路径。 最后,将中性密度(ND)滤光片合并为充当衰减器,使发射机的弱相干脉冲(WCP)输出能够。S2A。1064 nm纳秒脉冲激光器会产生泵浦脉冲(脉冲宽度约为10 ns)。因此,泵浦脉冲是由SLM显示的相掩码(大约100 Hz)所显示的,然后通过物镜透镜(×20,NIR增强)聚焦在Ingaasp Microlaser芯片平面上。通过相同的物镜准确地通过相同的物镜将1547 nm的自旋轨道光子准直并用二分色镜过滤。由于来自两个空间分离的微孔的自旋轨光子起源,因此这些光子在准直时将有横向动量不匹配。为了补偿这种不匹配,将由硅/二氧化硅二阶光栅制成的光束组合器放在芯片的傅立叶平面上。来自两个环的1级衍射梁被合并为单个准梁,这是旋转轨道Qudits的路径。最后,将中性密度(ND)滤光片合并为充当衰减器,使发射机的弱相干脉冲(WCP)输出能够。
在广阔的kerr显微镜中,moke(磁光kerr效应)的磁化环的测量值是可以很容易地记录沿环路的相关域图像的优势。由于显微镜的物镜镜头暴露于磁场,但是,循环通常会因物镜中发生的偏振光的非线性法拉第旋转而严重扭曲,并叠加到moke信号中。在本文中引入了基于电动分析仪的实验方法,该方法允许补偿法拉第的贡献,从而导致纯Moke循环。配备了该技术的宽阔领域的Kerr显微镜与基于激光的摩克磁力计一样,但还可以构成域图像,从而为循环解释提供了基础。
在人体管的顶部存在一个棱镜,以使物镜系统的光线弯曲45 o。这种弯曲的光束进入装有目镜镜头系统的拉动管中。目镜镜头系统是2个组件透镜系统(下场镜头和上眼镜),可以放大客观透镜系统形成的图像(其放大率大概是6或10或40或40或100次,取决于所使用的物镜的放大功率)。固定透镜系统或目镜可能具有10倍或15 X倍数。在包含目镜/叶位单元的透镜的金属套管上给出了叶片/目镜的放大功率,例如10x或15倍。通常是10倍的目镜,即使用10倍放大倍率。