作为农业的一部分,摘要牲畜耕作一直是几个世纪以来,旨在满足人类的基本食物需求。该行业包括各种子分支,例如牛种植,小型反刍动物耕作,家禽养殖和养蜂业。传统上,由人工劳动进行的动物护理和生产已经开始得到技术的发展,例如机器和人工智能的技术。创新(例如人工智能应用,图像处理系统和自动农场系统)减少了人类错误,生产质量和速度提高。尤其是在养牛,机器人系统和人工智能应用中,降低了人工成本,提高生产率并最大程度地减少环境影响。将来,使用更先进的机器人系统和人工智能算法,牲畜行业将变得更加可持续。这些技术在疾病检测等领域也有效。特别是在牛种植中,有人强调,机器人系统和人工智能应用降低了人工成本,提高生产力并最大程度地减少环境影响。可以预测,在将来,随着更先进的机器人系统和人工智能算法,该行业将变得更加可持续。在养牛行业中使用机器人系统和人工智能应用带来了各种好处。这些技术降低了人工成本,提高效率,提高动物福利并最大程度地减少环境影响。此外,它们还可以生产更健康的动物和更高质量的产品。随着机器人系统和人工智能应用的进一步扩散,牛农业将继续发生重大变化。将来,更先进的机器人系统和人工智能算法将进一步优化牛农业过程,并使行业更具可持续性。机器人系统和人工智能应用程序正在推动牛农业的重大转变。
为了达到巴黎协议的目标,该协议的目标是将全球温度的升高限制在1.5°C下,在所有部门中都需要大量的温室气体(GHG)降低。这包括农业,占全球温室气体排放量的很大比例。因此,迫切需要对农场的新技术采用,以减少温室气体排放并朝着当前的政策目标发展。最近,精确的牲畜种植(PLF)技术被强调为有希望的温室气体缓解策略,可通过提高生产效率间接减少温室气体排放。使用苏格兰作为案例研究,使用苏格兰牛追踪系统(CTS)的平均数据来创建两个基线牛肉生产场景(一个放牧和一个饲养系统),并使用Agrecalc Carbon Carbon carbon脚印来计算排放估算。随后对整个农场和产品排放的采用各种PLF技术的影响进行了建模。场景包括采用自动称重平台,基于加速度计的传感器进行发感检测(生育传感器)和基于加速度计的早期疾病检测传感器(健康传感器)。模型假设基于经过验证的技术,农场的直接经验和专家意见。采用所有三种PLF技术降低了整体排放(KG CO 2 E)和产品排放(KG CO 2 E/KG DEADWERIGHT)在放牧系统和容纳系统中。一般而言,PLF技术的采用对住房系统的影响要比放牧系统更大。例如,虽然健康传感器将总排放量减少了6.1%,但放牧系统的影响略低于4.4%。采用自动体重平台后,观察到总排放量最大,该平台在放牧系统中降低了3个月的屠杀年龄(6.8%),以及用于住房系统中健康监测的传感器(6.1%)。健康传感器还导致住房(12.0%)和放牧系统(10.5%)的产品排放量最大。这些发现表明,PLF可能是苏格兰牛肉系统的有效缓解策略。尽管这项研究利用了苏格兰牛场的数据,但在其他具有相似农业系统的欧洲国家可能可以实现可比的排放量。
•农业是应用CRISPR技术的主要领域之一。•中国认为是世界上CRISPR发明的主要国家,农业是该技术应用的重要重点。•美国是该国,结合了与CRISPR技术有关的农业中最多的专利请求家族,这些国家被存放在广泛的领土上。•大多数存款都与教育和研究机构有关,尤其是我们起源的机构。•在与农业CRISPR技术应用相关的发明开发中的特色公司是Corteva,Corteva,Bayer,Limagrain Group,Sakata Seed,Syngenta和KWS。•limagrain集团,萨卡塔种子,先正达和kws具有各自的原籍国计算的发明的重要部分:法国,日本,瑞士和德国。•在该地区的主要储户中,较小的公司,例如本森山,伊纳里农业技术,成对工厂服务和山东·洪芬生物技术。
牲畜被认为是非洲之角地区的关键生计来源。根据政府间发展权的说法(IGAD),“它构成了该地区超过2.5亿人的生活的主要经济,社会和文化方面。牧师构成了牲畜管理员的很大一部分。他们承担牲畜不仅作为商业企业,而且要作为一种不能仅在经济或财务上评估的社会投资。牧师提供了数百年的生态系统服务,这些服务很难转化为商业价值,这些无形价值包括许多相互关联的文化和环境利益。但是,牧民的实践也被认为是一个关键时刻。同时,据估计,至少1000万个牲畜死亡是2022年严重的过去干旱的直接结果。同时,该地区的社会转变意味着,年轻人对传统上被认为是田园生活方式的感兴趣。
Jiang,B.,Tang,W.,Cui,L.,Deng,X。 (2023)。 精确的牲畜耕作研究:全球科学计量评论。 动物13:2096。 Rodrigues,A。R.,Maia,M。R.,Miranda,C.,Cabrita,A。R.,Fonseca,A。J.,Pereira,J.L.,Trindade,H。(2022)。 含牛排泄物的氨和温室排放受喂养系统,哺乳期和抽样时间的影响。 环境管理杂志320:115882。 Brlek,P.,Bulić,L.,Bračić,M.,Projić,P.,škaro,V.,Shah,N.,Primorac,D。(2024)。 在临床实践中实施整个基因组测序(WGS):优势,挑战和未来的观点。 细胞13:504。 Laible,G。(2009)。 通过基因工程的进步和未来的前景来增强牲畜。 比较免疫学,微生物学和传染病,32:123-137 Van Eenennaam,A.L.,De Figueiredo Silva,F.,Trott,J.F.,Zilberman,D。(2021)。 牲畜的基因工程:监管延迟的机会成本。 动物生物科学的年度评论9:453-478。 Hampton,J。O.,Jones,B.,McGreevy,P。D.(2020)。 社会许可证和动物福利:过去十年来澳大利亚的发展。 动物10:2237。Jiang,B.,Tang,W.,Cui,L.,Deng,X。(2023)。精确的牲畜耕作研究:全球科学计量评论。动物13:2096。Rodrigues,A。R.,Maia,M。R.,Miranda,C.,Cabrita,A。R.,Fonseca,A。J.,Pereira,J.L.,Trindade,H。(2022)。含牛排泄物的氨和温室排放受喂养系统,哺乳期和抽样时间的影响。环境管理杂志320:115882。Brlek,P.,Bulić,L.,Bračić,M.,Projić,P.,škaro,V.,Shah,N.,Primorac,D。(2024)。在临床实践中实施整个基因组测序(WGS):优势,挑战和未来的观点。细胞13:504。 Laible,G。(2009)。 通过基因工程的进步和未来的前景来增强牲畜。 比较免疫学,微生物学和传染病,32:123-137 Van Eenennaam,A.L.,De Figueiredo Silva,F.,Trott,J.F.,Zilberman,D。(2021)。 牲畜的基因工程:监管延迟的机会成本。 动物生物科学的年度评论9:453-478。 Hampton,J。O.,Jones,B.,McGreevy,P。D.(2020)。 社会许可证和动物福利:过去十年来澳大利亚的发展。 动物10:2237。细胞13:504。Laible,G。(2009)。通过基因工程的进步和未来的前景来增强牲畜。比较免疫学,微生物学和传染病,32:123-137 Van Eenennaam,A.L.,De Figueiredo Silva,F.,Trott,J.F.,Zilberman,D。(2021)。牲畜的基因工程:监管延迟的机会成本。动物生物科学的年度评论9:453-478。Hampton,J。O.,Jones,B.,McGreevy,P。D.(2020)。 社会许可证和动物福利:过去十年来澳大利亚的发展。 动物10:2237。Hampton,J。O.,Jones,B.,McGreevy,P。D.(2020)。社会许可证和动物福利:过去十年来澳大利亚的发展。动物10:2237。
更好地利用现有土地:与普遍认为的产量增加会加大对自然生态系统的压力相反,巴西和其他地区的实证研究表明情况恰恰相反。为了减少对环境的影响,一种策略是提高现有农田的粮食产量,尽量减少对额外农田的需求,并保留土地用于栖息地保护。在巴西,1960-2000 年间农业现代化带来的生产力增长减缓了森林砍伐,因为农民转向了资本与土地比率更高的做法,有助于保护自然资源。更好地利用土地还意味着应根据每个地区的社会环境特点调整做法。对生物多样性、水资源的影响、该地区的社会影响和当地社区的生计等因素应成为深入分析的对象。
S. Kwok*(1),L。Nguyen(2),K。Raymond(2),A。Larkins(1),H。Omar(1),M。Bruce(1),
大多数消化和同化发生在牲畜的胃肠道中。平衡饮食中必需养分的可用性是成功生产动物的关键因素。肠道与许多菌群有关,这些微生物群充当广泛的障碍,在免疫发育中发挥积极作用,并加速饮食挑战。此外,肠道微生物组有助于在细胞/组织水平上进行交流,并介导动物的整体代谢。简而言之,肠道的适当功能是执行多种功能以提高牲畜耕作的健康,生产力和可持续性所必需的。因此,可以通过了解肠道在动物中的作用来最小化肠道疾病。从另一个角度来看,几种抗生素用于抵消与肠道疾病相关的疾病和感染。然而,一种涉及营养遗传学和动物行为的益生菌使用的全面方法增加了动物的韧性和鲁棒性的可能性。这降低了肠道相关疾病的速度并降低了商业药物的消费。但是,临床药物将用于治疗其他感染和疾病。换句话说,肠道微生物组在肠道中扮演着重要的障碍和消化作用,在体内牲畜模型中已经很好地证明了这一点。肠道功能和微生物组定植是免疫系统的触发因素和支持。此外,增强肠道健康的早期干预措施为整体牲畜发展提供了线索。大量研究证明了肠道微生物组,免疫系统和大脑之间的互补关联。肠道微生物组也影响了压力和焦虑的行为特征。总体而言,肠道健康受到GIT屏障的饮食,组成和功能的影响,并具有有效的消化和同化因子,这反过来又调节了动物的整体免疫状态。微生物群有助于发酵吸收,增强免疫力和生长,并改善宿主发育。此外,它调节肠道环境的稳定并保持瘤胃pH。因此,肠道菌群会加速饲料的效率,而高性能动物是牲畜农业的重要目标,可以满足日益增长的动物产品需求。
经过 2023 年的磋商,加拿大食品检验局在更新其指导文件《新型饲料评估指南:植物来源》时确认,源自基因编辑植物的饲料将以与任何其他植物源饲料相同的方式进行监管。这些饲料将根据产品的特性或特征进行监管,而不是根据开发方法。因此,使用基因编辑技术生产的植物源饲料只有在任何未列入附表 IV 或 V 中的成分,或者某种成分具有新型性状,意味着它不再与附表 IV 或 V 中列出的常规成分具有特征相似性时,才会作为新型饲料进行监管。在具有新颖性的情况下,饲料将需要经过加拿大食品检验局的上市前评估和批准,任何新型饲料成分,无论是传统开发的还是通过生物技术衍生的,也都需要这样做。该更新指南与美国 FDA 对通过基因编辑技术开发的植物源动物食品的监管方法一致;两国都是根据植物性状/特性来确定新颖性,而不是基于开发过程/方法。
7。将磁铁与管接触,直到所有Sbeadex颗粒形成一个沉淀(通常取决于样品类型)。在继续步骤8之前,请确保将所有Sbeadex颗粒均匀。8。卸下上清液并丢弃。确保去除尽可能多的上清液,并注意不要脱离颗粒。9。将适当的洗脱缓冲液放大器和涡流添加60秒。或者,涡旋30秒,在60°C下孵育1-5分钟。洗脱缓冲液AMP体积应为步骤1中使用的裂解物体积(例如如果使用了200 µL裂解液,请添加100 µL洗脱缓冲液AMP)。为了获得较高的浓缩DNA,可以将洗脱缓冲液体积减小到20 µL。