摘要 变分量子特征求解器 (VQE) 算法因其在近期量子设备中的潜在用途而受到越来越广泛的关注。在 VQE 算法中,参数化量子电路 (PQC) 用于准备量子态,然后利用这些量子态计算给定汉密尔顿量的期望值。设计高效的 PQC 对于提高收敛速度至关重要。在本研究中,我们通过动态生成包含问题约束的 PQC,引入了针对优化问题量身定制的问题特定 PQC。这种方法通过关注有利于 VQE 算法的酉变换来减少搜索空间,并加速收敛。我们的实验结果表明,我们提出的 PQC 的收敛速度优于最先进的 PQC,凸显了问题特定 PQC 在优化问题中的潜力。关键词:VQE算法,优化问题,问题特定参数化量子电路
解读非编码遗传变异的功能效应是人类遗传学的一项基本挑战。传统方法,如全基因组关联研究 (GWAS)、全转录组关联研究 (TWAS) 和数量性状位点 (QTL) 研究,受到隐藏的分子水平机制的限制,因此很难揭示复杂性状的遗传基础。下一代测序 (NGS) 技术的出现使得人们能够在各种细胞类型和组织中获得特定环境的全基因组测量,包括基因表达、染色质可及性、表观遗传标记和转录因子结合位点,为直接从 DNA 序列解码遗传变异效应铺平了道路。从头预测功能效应对于增强我们对转录调控及其破坏的理解至关重要,而这些破坏是由与人类疾病和特征相关的大量非编码遗传变异引起的。本综述系统概述了遗传变异效应预测的最新模型和算法,包括传统的基于序列的模型、深度学习模型和尖端的基础模型。它深入探讨了持续的挑战和未来方向,并深入介绍了该领域的当代发展。
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经Peer Review的认证)提供的,他已授予Biorxiv的许可证,以在2025年2月16日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2025.02.12.12.637845 doi:Biorxiv Preprint
从多模式MRI中进行的脑组织分割是许多神经影像分析管道的关键基础。已建立的组织分割方法并未开发出来应对由病理学(例如白质病变或肿瘤)引起的大型解剖变化,并且在这些情况下通常会失败。同时,随着深神经网络(DNN)的出现,脑损伤的分割显着成熟。然而,现有的方法很少允许对正常组织和脑病变的联合分割。当前,注释的数据集通常仅处理一个特定任务,并且依赖任务特定的成像协议,包括任务特定的成像模式集,因此目前妨碍了针对此类联合任务的DNN。在这项工作中,我们提出了一种新的方法,可以从聚合的任务特异性异型模式结构域构建关节组织和病变分割模型。从关节问题的各种公式开始,我们展示了如何通过经验分解和优化预期的风险。我们利用了处理跨数据集的异质成像方式的风险上限。为了应对潜在的域转移,我们基于数据增强,对抗性学习和伪健康的生成进行了整合并测试了三种常规技术。对于每个单独的任务,我们的联合方法与任务特定的和完全监督的模型相比具有比较性能。对两种不同类型的脑损伤进行评估,该框架将进行评估:白质病变和神经胶质瘤。在后一种情况下,缺乏用于定量评估目的的联合基础真相,我们提出并使用一种新型的临床上相关的定性评估方法。
神经反馈 (NFB) 是一种操作性条件反射程序,通过该程序,个体可以学会自我调节大脑的电活动。NFB 最初是作为治疗潜在脑电图功能障碍的疾病的干预措施而开发的,现在也被用作一种训练工具,以增强高性能情况下所需的特定认知状态。NFB 训练效果背后的最初想法是,变化应该仅限于训练过的脑电图频率。不用作反馈频率的脑电图频率应该是独立的,不受神经反馈训练的影响。尽管感觉运动节律 NFB 训练在认知表现增强方面取得了成功,但目前尚不清楚所有参与者是否都可以有意修改特定选择的脑电图 (EEG) 频率的功率密度。在本研究中,参与者被随机分配到控制心率变异性 (HRV) 生物反馈 (HRV) 训练组或 HRV 生物反馈和神经反馈 (HRV/NFB) 训练组。这项随机混合设计实验包括两节入门理论课和为期 6 周的训练期。我们研究了两个实验组在训练期间和训练期间不同脑电图频带的变化。所有参与者在训练期间和训练期间都表现出脑电图变化。然而,在 HRV/NFB 训练组中,未训练的脑电图频率发生了显著变化,而一些训练过的频率则不同。此外,HRV 组和 HRV/NFB 组的脑电图活动都发生了变化。因此,脑电图变化不仅限于训练过的频带或训练方式。
摘要:多年来,有证据表明胞质喹酮还原酶NQO2在帕金森氏症诱导的多巴胺神经元变性模型中可能的贡献作用,但大多数数据已在体外获得。因此,我们问了一个问题,NQO2是否参与MPTP的体内毒性,MPTP是一种经典用于帕金森氏病诱导神经变性的神经毒素。首先,我们表明NQO2在小鼠黑质中表达,nigra多巴胺能细胞体和人多巴胺能SH-SY5Y细胞也表达。一种高度特异性的NQO2抑制剂S29434能够减少具有星形胶质细胞U373细胞的SH-SY5Y细胞的共培养系统中MPTP诱导的细胞死亡,但在SHSY5Y单一培养物中无活性。我们发现S29434仅略微防止MPTP中毒在体内中的MPTP中的黑质酪氨酸羟化酶 +细胞损失。该化合物在第7天产生了多巴胺能细胞存活的略有增加,MPTP治疗后21个,尤其是1.5 mg和3 mg/kg剂量方案。未达到统计显着性的救援效应(除了在第7天进行了一个实验),并且在最新时间点随着4.5 mg/kg剂量的降低。尽管在小鼠MPTP模型中缺乏NQO2抑制剂的强大保护活性,但我们不能排除酶在帕金森氏变性中的可能作用,尤其是因为它在多巴胺能神经元中基本上表达。
神经肽垂体腺苷酸环化酶激活肽(PACAP)在调节压力,恐惧和焦虑反应中起关键作用。研究PACAP的遗传和分子研究表明性二态特征,女性在神经精神疾病中表现出PACAP信号的反应性增加。研究通过证明PACAP的调节扩大了PACAP的作用到药物使用障碍(SUD)可以导致尼古丁,乙醇,刺激剂和阿片类药物引起的神经生物学变化。鉴于患有SUD的女性相对于男性表现出明显的药物使用,复发和戒断敏感性,我们假设PACAP系统会导致这些性别特定的差异。因此,我们通过表征PACAP在与成瘾周期相关的分子,大脑区域和行为水平上的作用来回顾PACAP在SUD中的作用。我们提出了将PACAP与神经精神疾病联系起来的文献,这些文献证明了PACAP在神经元信号传导和调节成瘾的途径中的复杂作用。我们假设女性在成瘾周期的中毒和戒断阶段中更容易受到与PACAP相关的变化的影响。完全了解PACAP系统中的性别特定差异为未来的研究提供了基础,旨在开发针对SUD的量身定制干预措施。
- 如果在临床上适当的话,请考虑可能不需要PA请求的替代疗法。查看Medi-Cal RX Web门户网站上的合同药物和覆盖产品列表页面。- 如果治疗的更改不合适,请在过渡政策退休之前通过批准的Medi-Cal RX PA请求提交方法提交PA请求。请参阅事先授权提交提醒警报和Medi-Cal RX提供商手册,以获取有关提交PA请求的更多信息。
本文概述了最新的理论建议及其在量子机学习领域的实验实现的观点。没有详尽的目标,本文回顾了特定的高影响主题,例如量子增强学习,量子自动编码器和量子概述器,以及它们在量子光子学和超导管电路平台中的实验实现。量子机器学习的领域可以是第一种量子技术之一,产生对工业以及对社会有益的结果。因此,有必要在嘈杂的中间量子计算机中推动该技术的初始量子实现,旨在实现机器学习中的富有成果的计算,这些计算比任何其他当前或将来的计算范式都更好。
摘要:在本文中,我认为弹片–Costa no-go-go theorem削弱了量子力学的基本本体论的观点的最后剩余可行性本质上是经典的:也就是说,物理现实是,物理现实是由现实的,相反的,在本地的范围内,属于本地的,属于斑点的属性,并确定斑点的属性,并确定斑点的属性,并确定斑点的属性,并确定了斑点的属性,并确定了物理现实,并确定了物理现实的属性,并确定了物理现实,并具有斑点的属性,并确定了物理现实的属性,并具有物理现实的态度。通常,“量子”行为是根据我们自己对这些实体的原理无知的函数而出现的。称这种观点爱因斯坦 - 贝尔现实主义。可以证明,解释量子理论的因果对称局部隐藏变量方法是爱因斯坦 - 贝尔现实主义的最自然解释,在这种情况下,因果对称性在避免传统无关定理的非分类后果中起着重要作用。但是,弹片和哥斯达黎加认为,诸如因果对称性等异国因果结构无法解释世界上非文化本体论特性导致的量子行为。这特别令人担忧的是爱因斯坦 - 贝尔现实主义和古典本体论。在第一个实例中,定理的明显后果是对爱因斯坦 - 贝尔现实主义的直接拒绝。但是,除此之外,我认为,即使有可能在因果对称框架内考虑上下文上的上下文变量,这种说法的成本也破坏了因果对称性的关键优势:接受因果关系对称性比拒绝经典的本体学更经济。无论哪种方式,似乎我们都应该放弃古典本体论。
