背景:晚期软组织肉瘤 (STS) 患者预后不佳,且有效的治疗选择很少。同源重组修复 (HRR) 通路缺陷会积累 DNA 修复错误和基因突变,从而导致肿瘤发生。BRCAness 描述的是缺乏种系 BRCA1/2 突变且存在 HRR 缺陷 (HRD) 的肿瘤。然而,STS 中 BRCAness 的特征仍然很大程度上未知。因此,本研究旨在利用全外显子组测序 (WES) 探索 STS 中 BRCAness 的基因组和分子图谱,以找到 STS 治疗的潜在靶点。方法:对来自中山大学附属第一医院的 22 个 STS 样本进行 WES,以揭示可能的基因组和分子特征。然后使用来自 Cancer Genome Atlas (TCGA) 数据库的 224 个 STS 样本的数据和体外数据验证这些特征。对 BRCAness 的潜在生物标志物进行分析。在 STS 细胞系、细胞系来源的异种移植瘤 (CDX) 和患者来源的异种移植瘤 (PDX) 中评估了 STS 的靶向药物敏感性和化疗药物的联合疗法筛选。结果:与 30 种癌症体细胞突变特征相比,使用非负矩阵分解在 22 个 STS 样本中确定了 HRD 特征的高余弦相似度 (0.75)。单核苷酸多态性表明 22 个 STS 样本中 BRCA1/2 的突变率较低(分别为 11.76% 和 5.88%)。然而,拷贝数变异分析显示染色体普遍不稳定性;此外,54.55% 的 STS 样本(12/22)携带 BRCAness 性状。随后,在来自 TCGA 和体外的 224 个 STS 样本中也检测到了相似的基因组和分子特征。聚(ADP-核糖)聚合酶(PARP)-1 可能是 HRD 和治疗反应的一个有希望的反映。此外,PAR 形成水平被发现与 PARP-1 相关。随后,确定 STS 细胞系对 PARP 抑制剂(PARPi)尼拉帕尼敏感。此外,基于五种常见 PARPis 的筛选试验和阿霉素、异环磷酰胺、达卡巴嗪和替莫唑胺(TMZ)的组合试验,尼拉帕尼和 TMZ 在 STS 细胞系中具有最强的协同作用。尼拉帕尼和 TMZ 组合的协同作用和安全性也在 CDX 和 PDX 中得到证实。
图 1:传统生物标志物分析与患者特异性信号特征分析。遗传/蛋白质生物标志物分析依赖于对常见癌症类型相关基因或蛋白质表达水平的评估(左)。药物组合的设计是根据对周围信号网络状态的推断,基于先前的知识(左)。相比之下,患者特异性信号特征 (PaSSS) 分析涉及数百种癌症相关蛋白质的蛋白质组学分析,并无偏倚地识别每个样本中改变的信号特征,即不依赖于先前对信号通路的了解。这使得能够合理设计基于患者特异性独特重新连接信号网络的个性化靶向药物组合(右)。
机器学习(ML)是人工智能(AI)的一个分支,致力于开发算法以学习和提高其在复制人类学习过程的特定任务的绩效。深度学习(DL)是ML的子场。ML和DL之间的主要区别是ML需要手动提取的特性或功能,而DL自动确定并提取与手头任务相关的功能。从这个意义上讲,DL是对ML的改进,因为它降低了人类的依赖性。该动手课程的模块-I主要关注数据:特征,统计和视觉分析,特征分析和减少以及机器学习模型:分类,回归,聚类和加强与实际动物使用现实世界中的实际动物相关的应用程序与理论概念相关联。此外,该模块还应处理卷积神经网络(CNN)。但是,模块II应专注于动手应用。
Dotseth 先生的技术成就体现在许多飞机(包括 B-1 和 B-2 轰炸机)的生存能力设计中。他负责低可观测特征分析、敌对威胁评估、核武器运载分析、地对空导弹遭遇战以及核硬度要求合规性。他因在 20 世纪 60 年代末开发了第一本《航空生存能力设计手册》而受到赞誉,该手册成为了 MIL-HDBK-336 的基础。此外,Dotseth 先生在海军航空系统生存能力要求 AR-107 的开发中发挥了关键作用,该手册后来成为国防部 MIL-STD-2069 的基础。除了直接的生存能力支持外,Dotseth 先生还结合其对威胁和损伤的了解以及结构修复经验,支持飞机战斗损伤评估和修复学科。
骨髓增生异常综合征 (MDS) 是一组异质性慢性血液系统恶性肿瘤,其特征是骨髓造血功能受损和造血功能低下,以及进展为急性髓系白血病 (AML) 的可变风险。MDS 是由复杂的基因突变组合驱动的,导致临床表型和结果的异质性。遗传学研究已经能够识别出一组具有复发性突变的基因,这些基因是 MDS 发病机制的核心(Chiereghin 等人,2021 年)。DNA 甲基化对于印记、X 失活和多能或组织特异性基因的沉默至关重要,从而调节胚胎发育。它也是维持分化细胞中染色体稳定性和通过抑制转座子和重复元件的插入来防止突变所必需的。因此,这些表观遗传标记的无法维持和异常的DNA甲基化模式的建立与某些蛋白质的低表达或过表达有关,最终导致各种病理(Gros et al.,2012)。因此,DNA甲基化抑制剂可以有效治疗MDS。目前临床上应用最广泛的甲基化抑制剂是阿扎胞苷(AZA)和地西他滨(DAC)(Sekeres and Taylor,2022)。研究表明,阿扎胞苷和地西他滨在MDS等慢性血液系统恶性肿瘤的治疗中起着非常重要的作用。关于其作用机制,学术界存在多种假说,其中“DNA甲基转移酶活性受到抑制,导致抑癌基因低甲基化和抑癌基因表达上调”的观点被广泛认可。事实上,DNA甲基化抑制剂往往作用于全基因组水平,其整体影响不仅包括引起抑癌基因去甲基化、上调抑癌基因表达,从而发挥治疗作用,还可能包括诱导致癌基因去甲基化,从而导致致癌基因上调,产生致病作用。因此,在MDS的治疗中,DNA甲基化抑制剂治疗的潜在“先天不足”在于,在去甲基化抑癌基因的同时,也上调了致癌基因的表达,不仅能治疗疾病,还带有极高的致病风险(Liu et al.,2022)。根据现有资料,DNA甲基化抑制剂在骨髓增生异常综合征和急性髓系白血病患者中的疗效也远低于临床预期,部分患者对该类药物无反应,少数患者在DNA甲基化抑制剂治疗失败后平均生存期不足半年,而致癌基因的上调可能是重要原因,这表明去甲基化治疗的适用人群有限,临床需要开展更有针对性的群体治疗。更重要的是,虽然两者都已被批准用于临床治疗,但目前比较两者引起的不良反应的异同点的研究较少。本研究检索到美国食品药品监督管理局(FDA)批准的两种治疗MDS的去甲基化药物:阿扎胞苷和地西他滨。这两种治疗药物表现出相似的疗效特征。截至2020年7月31日,根据使用马尔可夫链蒙特卡洛方法对网络进行荟萃分析
描述 用于读取、写入、绘制和操作系统发育树的函数,在系统发育框架中分析比较数据,祖先特征分析,多样化和宏观进化分析,计算 DNA 序列的距离,读取和写入核苷酸序列以及从 BioConductor 导入,以及多种工具,例如 Mantel 检验、广义天际线图、系统发育数据的图形探索(alex、trex、kronoviz)、使用平均路径长度和惩罚可能性估计绝对进化率和时钟树,使用非同时期序列确定树的年代,将 DNA 转化为 AA 序列,以及评估序列比对。系统发育估计可以用 NJ、BIONJ、ME、MVR、SDM 和三角法以及几种处理不完整距离矩阵的方法(NJ*、BIONJ*、MVR* 和相应的三角法)来完成。一些函数调用外部应用程序(PhyML、Clustal、T-Coffee、Muscle),其结果返回到 R 中。
摘要 - 这项研究是在斯里兰卡阿加拉瓦塔(Agalawatta)的达顿菲尔德(Dartonfield)的橡胶研究所进行的,以识别替代性生物控制剂,以管理橡胶种植中的圆形叶点疾病。由Colletotrichum spp和Pestalotioides组引起的新报告的循环斑点疾病分布在斯里兰卡以及世界其他橡胶生长的国家。在斯里兰卡,疾病的发生率越来越破坏性橡胶种植园。 在这项研究中,我们分离了内生细菌,以评估其对病原体的拮抗活性,从而导致循环斑点疾病(Gunarathne&Fernando,2017年)。 使用3个克隆(RRIC 100,121和Rrisl 203)在Bud Wood Nursery中从橡胶叶中分离出内生细菌。 使用文化和微观特征分析了分离的内生细菌。 结果表明,分离出16种内生细菌,并根据其抑制百分比确定了6种菌株(CTR EB1,P44,EB3,CFR EB4,CFR EB4,CFR EB1,CFR EB1,CFR EB4和P20 EB5)。 这项研究强调了分离的最高抑制百分比内生细菌的高潜力,以抵抗Hevea Brasiliensis中的圆形叶片斑点病原体。在斯里兰卡,疾病的发生率越来越破坏性橡胶种植园。在这项研究中,我们分离了内生细菌,以评估其对病原体的拮抗活性,从而导致循环斑点疾病(Gunarathne&Fernando,2017年)。使用3个克隆(RRIC 100,121和Rrisl 203)在Bud Wood Nursery中从橡胶叶中分离出内生细菌。使用文化和微观特征分析了分离的内生细菌。结果表明,分离出16种内生细菌,并根据其抑制百分比确定了6种菌株(CTR EB1,P44,EB3,CFR EB4,CFR EB4,CFR EB1,CFR EB1,CFR EB4和P20 EB5)。这项研究强调了分离的最高抑制百分比内生细菌的高潜力,以抵抗Hevea Brasiliensis中的圆形叶片斑点病原体。