生物医学智能为疾病和障碍的自动诊断提供了一种预测机制。随着计算生物学的进步,神经成像技术已广泛应用于临床数据分析。注意力缺陷多动障碍 (ADHD) 是一种精神障碍,其症状包括注意力不集中、冲动和多动,早期诊断对于预防不良后果至关重要。本研究通过评估多种特征提取方法,利用静息状态大脑的功能性磁共振成像 (fMRI) 数据解决 ADHD 识别问题。比较应用基于种子的相关性 (SBC)、低频波动分数幅度 (fALFF) 和区域同质性 (ReHo) 的特征来获得特异性和敏感性。这有助于确定使用卷积神经网络 (CNN) 进行 ADHD 分类的最佳特征。使用 fALFF 和 ReHo 的方法的准确率为 67%,而 SBC 的准确率在 84% 到 86% 之间,灵敏度在 65% 到 75% 之间。
在学习机器方面,Nilsson (1965) 的研究更多地关注模式分类的机器学习。近年来,对眼动追踪的研究也有所增加。许多研究人员在实验中研究如何利用眼动追踪数据进行研究。因此,在分类研究中使用眼动追踪技术时,会引发一个疑问:从眼动追踪数据中可以获得哪些眼部特征用于分类。眼动追踪技术是指跟踪和测量用户的眼球运动和眼睛焦点的过程。眼动追踪广泛应用于心理学、市场营销、医学、电脑游戏和认知科学等许多领域。因此,眼动追踪越来越多地应用于计算机科学领域,并利用眼部特征来研究信息处理任务(Rayner,2009)。眼动追踪数据可以通过使用眼动追踪传感器或摄像头来测量和获取。这些数据提供了多种特征,可用于多种分类任务。眼动追踪技术非常有用,它可以在未来被广泛采用和实施,因为它只需要一个简单的摄像头就可以收集所需的数据。在本文中,我们进行了系统的文献综述,并收集了5年内(即从2016年到现在)所有与使用眼动追踪数据中的特征进行分类相关的研究和文章。第一部分介绍本文。在背景部分,我们提供了眼动追踪技术和眼动追踪器类型的背景,包括桌面眼动追踪、移动眼动追踪和虚拟现实(VR)中的眼动追踪,以及机器学习的简要介绍。方法论部分描述了研究方法,包括研究问题、选择标准、搜索过程和选择过程。结果部分展示了结果,相关研究如表1所示。最后一部分总结了本文。
信号由在不同情况下组合的多个频率组成。离散小波变换 (DWT) 用于使用一系列高通/低通滤波器将信号分解为不同的频带。或者,使用功率谱密度 (PSD) 来获取频谱以及每个频率的功率分布。统计特征来自 DWT 和 PSD。然后,PCA 用于降维,并且在 SVM 分类器的情况下仅将得到的数据用于情绪分类,因为我们需要尽可能多的数据来进行深度学习。所有这些都是为了从分类器中提取最大性能并最小化所需的计算资源,然后将信号分解为组成频率并得出表征整个信号的相关统计特征。
非盲反卷积的目的是从鉴定获得的内核中恢复其模糊的图像。iS iSTING TEEP神经体系结构通常是基于大型地面真相图像的大型数据集建立的,并接受了监督训练。并不总是可用的,尤其是针对生物化应用,敏锐的高质量地面真相图像并不总是可用的。这严重阻碍了当前方法在实践中的适用性。在本文中,我们提出了一种新型的非盲卷曲方法,该方法利用了深度学习和经典迭代反卷积算法的力量。我们的方法结合了一个预先训练的网络,从输入图像中提取深度特征以及Itera的Richardson-Lucy反卷积步骤。随后,采用零射击优化过程来集成反浏览特征,从而产生高质量的重建图像。通过使用经典的迭代反卷积方法进行初步重构,我们可以有效地利用较小的网络来产生最终图像,从而加速重建,同时减少需求量,以减少有价值的计算资源。我们的方法证明了各种现实世界应用程序中的显着改进。
英语论文是英语学习的关键部分,反映了学生运用英语技能的整体能力。因此,对英语论文的准确评分至关重要[1]。传统的评估方法涉及教师的手动分级,这很耗时,可能无法为每个学生提供个性化评估,尤其是在面对大量学生时[2]。机器学习算法的出现提供了一种自动评分英语论文的方法。自动论文评分的机器学习算法的基本原理是使用大量的预定论文数据集来训练该算法以学习评分模式并将其应用于未知文章。将机器学习应用于自动的英语论文评分可以使评分更加客观和高效,从而节省了教师的时间和精力[3]。但是,在捕获诸如写作样式和上下文之类的主观信息时,将机器学习用于自动评分仍然存在局限性。需要进一步改进算法以说明这些主观元素。McNA-MARA [4]研究了层次分类方法在自动论文评分中的应用,并证明了该方法在论文评分领域的有效性。li [5]提出了一种使用神经网络自动中文论文评分的新模型,该模型应用BERT网络以获取文章的句子向量,然后使用两层双向双向短期内存(BI-LSTM)提取文章向量。实验结果表明,该模型的性能比其他基线方法更好。hao [6]提出了一个加权有限状态自动机系统,并利用了渐进的潜在语义分析来处理大量论文。实验结果验证了系统的有效性。本文简要介绍了用于英语论文的基于XGBoost的自动评分算法,并引入了LSTM语义模型,以从论文中提取语义评分功能,以提高算法的准确性。最后,在模拟实验中,使用五种主题赋予的论文将优化的XGBoost算法与传统的XGBoost和LSTM算法进行了比较。
摘要 — 由于其事件驱动的特性,脉冲神经网络 (SNN) 被认为是计算效率高的模型。脉冲神经元编码有用的时间事实并具有高抗噪性。然而,时空复杂性的高质量编码及其对 SNN 的训练优化受到当前问题的限制,本文提出了一种新颖的分层事件驱动视觉设备,以探索信息如何通过生物可控机制在视网膜中传输和表示。该认知模型是一个增强脉冲的框架,包括 CNN 的功能学习能力和 SNN 的认知能力。此外,该视觉设备以生物现实主义的方式建模,具有无监督学习规则和高级脉冲发放率编码方法。我们在一些图像数据集(MNIST、CIFAR10 及其嘈杂版本)上对它们进行训练和测试,以表明我们的模型可以处理比现有认知模型更有价值的数据。本文还提出了一种新颖的量化方法,使所提出的基于脉冲的模型更适合神经形态硬件实现。结果表明,这种联合 CNN-SNN 模型可以获得更高的聚焦精度并获得更有效的泛化能力。
小野淳一 川崎医疗福祉大学 医疗技术学部 临床工程系 〒701-0193 冈山县仓敷市松岛 288 电话:086-462-1111 传真:086-462-1193
a 哈尔滨工业大学计算机科学与技术学院,哈尔滨,中国 b LINEACT CESI,里昂 69100,法国 c 埃法特大学电气与计算机工程系,吉达 22332,沙特阿拉伯 d Persistent Systems Limited,那格浦尔,印度 e AGH 科技大学生物控制论与生物医学工程系,克拉科夫,波兰 f 克拉科夫理工大学计算机科学与电信学院计算机科学系,华沙 24,31-155,克拉科夫,波兰 g 波兰科学院理论与应用信息学研究所,Ba ł tycka 5,44-100,格利维采,波兰 h EIAS 数据科学实验室,苏丹王子大学计算机与信息科学学院,利雅得 11586,沙特阿拉伯 i 梅努菲亚大学理学院数学与计算机科学系,32511,埃及j 埃及梅努菲亚大学计算机与信息学院信息技术系
摘要。本文介绍了一种基于脑电图 (EEG) 的情绪识别新方法。该方法使用迁移学习从多通道脑电图信号中提取特征,然后将这些特征排列在 8×9 的图中以表示它们在头皮上的空间位置,然后我们引入一个 CNN 模型,该模型接收空间特征图并提取脑电图通道之间的空间关系并最终对情绪进行分类。首先,将脑电图信号转换为频谱图并通过预先训练的图像分类模型从脑电图频谱中获取特征向量。然后,重新排列不同通道的特征向量并将其作为 CNN 模型的输入,该模型提取空间特征或通道依赖关系作为训练的一部分。最后,CNN 输出被展平并通过密集层以在情绪类别之间进行分类。在本研究中,SEED、SEED-IV 和 SEED-V EEG 情绪数据集用于分类,我们的方法通过五倍交叉验证在 SEED 上实现了 97.09% 的最佳分类准确率,在 SEED-IV 上实现了 89.81% 的最佳分类准确率,在 SEED-V 数据集上实现了 88.23% 的最佳分类准确率。
摘要。基于磁共振图像 (MRI) 分析识别脑中的肿瘤组织是一项具有挑战性且耗时的任务,高度依赖于放射科医生的专业知识。由于肿瘤的及时诊断往往是患者生存的固有因素,因此,减少花在 MRI 手动分析上的时间,同时提高检测过程的准确性至关重要。为了解决这些问题,许多研究工作已经调查了高效的计算机视觉系统。它们为协助医疗保健提供者建立快速、更准确的肿瘤检测、分类和分割提供了新的机会。然而,这些解决方案通常基于深度学习方法,开发和调整这些解决方案仍然耗时耗力,同时导致决策系统缺乏可解释性。在本研究中,我们通过使用选择性搜索 (SS) 算法结合简化的脉冲耦合神经网络 (PCNN) 进行视觉特征提取和检测验证来解决脑肿瘤检测任务,以应对这些问题。