压力是指身体对任何环境变化做出的生理、情绪和心理反应,需要进行调整,对人类心理产生重大影响。视障人士 (VIP) 的压力尤其难以控制,因为他们在未知情况下很容易感到压力。脑电图 (EEG) 信号可用于检测压力,因为它基本上代表了人类大脑中持续的电信号变化。文献表明,压力检测技术大多基于时域或频域分析。然而,使用时域或频域分析可能不足以提供适当的压力检测结果。因此,本文提出了一种使用经验模态分解 (EMD) 和短期傅里叶变换 (STFT) 从 EEG 信号中提取考虑时空信息的特征的方法。在 EMD 中,信号首先被分解为表示有限数量信号同时保持时域的固有模态函数 (IMF),然后使用 STFT 将时域转换为时频域。采用支持向量机 (SVM) 对陌生室内环境中 VIP 的压力进行分类。将所提方法的性能与最先进的压力检测技术进行了比较。实验结果证明了所提技术优于现有技术
* 通讯作者:sachin.viet@gmail.com,电话:+91-9268793832 摘要 - “癫痫”是一种常见的神经系统大脑疾病,会影响人类生命的任何阶段。全世界约有 1-2% 的人口受到这种主要慢性疾病的影响。在癫痫诊断的几种应用中,脑电图 (EEG) 信号是早期发现癫痫发作的最重要工具。根据癫痫发作,脑电图 (EEG) 信号可分为癫痫性和非癫痫性。最近的研究主要通过两种方法进行了预测和分析癫痫发作的各种可能性:使用信号处理的传统方法和基于深度学习的方法。因此,需要找到一种合适且可靠的方法来检测和分类 EEG 信号中的癫痫发作。由于 EEG 信号本质上非常随机且非线性,因此我们需要一种非线性技术来检查 EEG 信号,从而能够对不同的 EEG 信号(即癫痫信号和非癫痫信号)进行分类。在我们的论文中,我们提出了一种非线性技术,使用递归量化分析方法(缩写为 RQA)来提取 EEG 信号的特征,其参数来自递归图 (RP)。在分析和分类时间序列时,大多数时候会从 EEG 时间序列中提取一些已识别的统计特征集,并将其作为机器学习分类器的输入。我们提出的方法找到了一种使用深度神经网络 (DNN) 对 EEG 信号时间序列进行分类的新颖且合适的方法。因此,使用递归图将 EEG 信号转换为 RGB 图像。我们使用预训练的 DNN 作为 ResNet-50,这是一个深度为 50 层的卷积神经网络,用于从递归图中提取特征。然后我们使用多个机器学习分类器将信号分类为癫痫和非癫痫,并指出 SVM 的准确率最高。本研究论文表明,可以使用深度学习算法通过脑电图信号利用复发图诊断癫痫,这种算法通常用于图像分类挑战。关键词-癫痫;脑电图信号;复发图;深度神经网络;成像时间序列数据 1. 简介大脑是人体的重要器官,负责监测和控制代谢过程。癫痫、缺血性中风和脑肿瘤等脑部疾病可能会损害正常的生物功能 [1]。神经系统疾病影响从婴儿到老年人的所有年龄段的人。这些疾病有几种形式,癫痫在受其影响的人数最多方面位居第四
摘要 - 目的:在大多数现有的大脑计算机界面(BCI)系统中,通常会忽略脑电图频谱动力学中隐藏的拓扑信息。此外,脑电图与其他信息性的大脑信号(例如功能性近红外光谱(FNIRS))的系统多模式融合尚未得到充分研究,以增强BCI系统的性能。在这项研究中,我们利用一系列基于图形的EEG特征来研究其在运动假想(MI)分类任务上的性能。方法:我们首先根据复杂的Morlet小波时间频率图提取用户多通道EEG信号的幅度和相位序列,然后将它们转换为无向图以提取EEG EEG拓扑特征。然后通过阈值方法选择基于图的特征,并与FNIRS信号的时间特征融合在一起,每个特征是由最小绝对收缩和选择算子(Lasso)算法选择的。然后,通过线性支持向量机(SVM)分类将融合功能分类为MI任务与基线。结果:与在频带过滤的时间eeg信号上构建的图相比,EEG信号的时频图提高了MI分类精度约5%。我们提出的基于图的方法还显示出与基于功率谱密度(PSD)的经典脑电图特征相当的性能,但是标准偏差较小,显示出在实用BCI系统中潜在使用的稳健性。关键字 - 大脑计算机界面(BCI),EEG-FNIRS数据融合,特征选择,图理论。我们的融合分析显示,与最高的FNIRS相对于单个模态效果相关时,与最高的FNIR相比,仅EEG的最高平均准确性仅为17%,而仅EEG的最高平均精度仅为最高的平均准确性,而最高的FNIRS的平均准确性仅为3%。显着性:我们的发现表明,通过使运动假想推理更加准确,更强大,利用混合BCI系统中基于图的特征的提议数据融合框架的潜在用途。
J. Anila Maily a,b C. Velayutham 博士 c*,M.Mohamed Sathik da 研究学者,(兼职内部)(注册号:12336),Sadakathullah Appa 学院计算机科学系,Rahmath Nagar,Tirunelveli- 627011 b 副教授,圣玛丽学院(自治),Thoothukudi。 c *蒂鲁琴杜尔阿迪塔纳尔艺术与科学学院院长兼副教授,d Sadakathullah Appa 学院校长,Rahmath Nagar, Tirunelveli -627011, 泰米尔纳德邦,印度。 a,b,c,d 附属于 Manonmaniam Sundaranar 大学,Abishekapatti, Tirunelveli-627012, 泰米尔纳德邦,印度。文章历史记录:收稿日期:2021 年 1 月 10 日;修订日期:2021 年 2 月 12 日;接受日期:2021 年 3 月 27 日;在线发表日期:2021 年 4 月 28 日 _____________________________________________________________________________________________________ 摘要:脑机接口 (BCI) 提供了大脑与外界之间的沟通途径。对于因神经肌肉疾病而致残的人来说,这是一种福音。BCI 的工作原理是测量脑信号、分析、解释它们并将其转化为动作。脑电图 (EEG) 是大脑产生的电活动的测量。运动意象是在没有任何身体运动的情况下对运动的心理模拟。每个脑信号都由几个称为特征的相关值量化。一旦提取出特征,就可以识别用户的意图。特征提取模块负责选择对分类非常重要的特征。在本文中,我们提出了时域统计特征提取技术,例如均值相关性、峰度、偏度,并使用 KNN 分类器进行分类。将结果与通用空间模式(CSP)提取的特征进行比较,并使用线性判别分析分类器进行分类。关键词:BCI,EEG,运动想象,特征提取
摘要 - 次生的入侵神经接口需要完全可植入的无线系统,这些系统可以同时从大量通道中记录。但是,由于高吞吐量,将记录的数据从植入物转移到外部接收器是一个显着的挑战。为了应对这一挑战,本文提出了一种神经记录系统 - 片上,该系统通过使用片上的特征提取来实现高资源和无线带宽效率。能量 - 有效的10位20 ks/s前端放大并数字化局部势势内的神经信号(LFP)和动作电位(AP)频段。使用压缩的Hadamard变换(CHT)处理器将每个通道的原始数据分解为光谱特征。选择要计算的功能的选择是通过机器学习算法来量身定制的,以便在不损害分类性能的情况下将总体数据速率降低80%。此外,CHT功能提取器允许在接收器侧的波形重建进行监视或其他后处理。通过体内和离线实验验证了所提出的方法。65 nm CMO制造的原型还包括无线
在本文中,使用滑动窗口机理的混合方法,然后是模糊C,意味着针对自动化的脑肿瘤提取提出了聚类。所提出的方法包括三个阶段。第一阶段用于通过实施预处理技术,然后进行纹理特征提取和分类来检测肿瘤脑MR扫描。此外,此阶段还比较了不同分类器的性能。第二阶段由使用滑动窗口机理的肿瘤区域进行定位,其中大小的窗户扫描整个肿瘤MR扫描,窗户被归类为肿瘤或无肿瘤。第三阶段由模糊C组成,是指通过去除从阶段2获得的错误分类窗口来获得肿瘤的确切位置。2D单光谱解剖学特性MRI扫描被考虑进行实验。结果在灵敏度,特异性,准确性,骰子相似性系数方面表现出显着的结果。
为了推断意图,脑机接口必须提取能够准确估计神经活动的特征。然而,信号质量随时间推移而下降,阻碍了使用特征工程技术恢复功能信息。通过使用植入三位人类参与者大脑皮层的电极阵列记录的神经数据,我们在此展示了卷积神经网络可用于将电信号映射到神经特征,方法是联合优化特征提取和解码,但所有电极必须使用相同的神经网络参数。在这三位参与者中,神经网络在所有指标的光标控制任务中都带来了离线和在线性能改进,优于宽带神经数据的阈值交叉率和小波分解(以及其他特征提取技术)。我们还表明,经过训练的神经网络无需修改即可用于新的数据集、大脑区域和参与者。
摘要 玉米是一种在印度尼西亚等发展中国家广泛种植的植物。为了提高玉米产量,研究人员一直在对玉米植物疾病分类的当前技术进行创新。三种疾病侵袭玉米叶片,即灰斑病、枯萎病和灯心草病。我们使用的数据量为 3500 个数据,其中包括 500 个灰斑病、1000 个枯萎病、1000 个灯心草病和 1000 片健康叶片。本研究旨在开发一种人工智能模型。我们开发的人工智能模型使用 LBP 特征提取结合 k-NN 作为分类器。除了使用 k-NN 方法外,我们还使用了几种分类方法(如朴素贝叶斯和 Adaboost)进行测试。我们的测试结果是,与朴素贝叶斯和 Adaboost 方法相比,k-NN 方法具有最高值。使用 k=5 的 k-NN 的性能结果为 81.1%、AUC 值为 94.1%、F1-Score 为 80.9%、准确率为 81.8%、召回率为 81.1%。
摘要:当前关于癫痫的复杂网络研究大多采用脑电图直接构建静态复杂网络进行分析,忽略了其动态特征。本研究采用滑动窗口法对儿童癫痫患者与儿童对照组睡眠状态下的脑电图构建动态复杂网络,提取动态特征并结合到各类机器学习分类器中探究其分类性能,并比较了静态与动态复杂网络的分类性能。在单变量分析中,静态复杂网络中原本不显著的拓扑特征在动态复杂网络中可以转化为显著特征。在大多数导联间连通性计算方法下,利用动态复杂网络特征进行判别的准确率均高于静态复杂网络特征。特别是在全频段下的相干函数虚部(iCOH)方法中,大多数机器学习分类器的判别准确率均高于95%,且在较高频段(β频段)和全频段的判别准确率高于较低频段。与使用静态复杂网络特征相比,我们提出的方法和框架可以有效地概括脑电信号中更多的时变特征,从而提高机器学习分类器的判别准确率。
自闭症谱系障碍 (ASD) 的特征是社交和认知技能受损、情绪障碍、焦虑和抑郁。传统的 ASD 诊断过程冗长,迫切需要早期进行有意义的干预。最近,不同的研究提出了通过使用深度神经网络 (DNN) 和机器学习算法进行情绪预测来进行 ASD 诊断和干预的潜力。然而,这些系统缺乏通过多个基准数据集进行广泛的大规模特征提取 (LSFE) 分析。需要进行 LSFE 分析来识别和利用最相关的特征和通道进行情绪识别和 ASD 预测。考虑到这些挑战,我们首次分析和评估了一个广泛的特征集,以使用 LSFE 和特征选择算法 (FSA) 选择最佳特征。使用不同的最佳情况 FSA 确定了一组最多八个最合适的通道。还确定了通道和特征的主体重要性。所提出的方法使用线性支持向量机 (LSVM) 分类器进行情绪预测时,最佳准确率、精确率和召回率分别为 95%、92% 和 90%。它还为 ASD 分类提供了 100% 的最佳准确率、精确率和召回率。这项工作利用了文献中迄今为止报告的最大数量的基准数据集 (5) 和主题 (99) 进行验证。本文提出和使用的 LSVM 分类算法的复杂度明显低于最近 ASD 和情绪预测系统中使用的 DNN、卷积神经网络 (CNN)、朴素贝叶斯和动态图 CNN。