精心收集的机载图像显示出能够看到水面特征以及浅水底特征(例如水下植被和人造目标)。传统的摄影测量图像和机载数字图像都因多种因素而导致图像清晰度下降,包括毛细管波和小重力波、水柱或原位成分。在机载或原位地下图像采集过程中部署水下和地面人造校准目标,为校正图像以改善地下和地面特征及其检测奠定了初步基础。所介绍的方法以及 490 nm、532 nm 和 698-700 nm 的图像清楚地显示了浅水区的地下特征。所采用的技术包括使用大画幅相机和摄影测量胶片以及特殊滤光片(例如 Wratten # 70),以便在植物“红边”附近提供更窄的光谱特征,以用于改善对高光谱推扫式图像的解释。来自多个传感器和平台(包括自主水下航行器)的组合图像构成了数据融合的基础,用于自动提取水面和地下特征。来自新型高光谱成像系统的数据展示了亚米级高光谱图像在地下特征检测中的实用性。
摘要 — 近年来,人工智能 (AI) 极大地改变了人类活动的各个方面,包括文本创作。人工智能技术的进步使计算机能够生成与人类写作非常相似的文本,这引发了人们对错误信息、身份盗窃和安全漏洞的担忧。为了应对这些挑战,了解人工智能生成文本的潜在模式至关重要。本研究侧重于揭示这些模式,以建立区分人工智能生成文本和人类生成文本的道德准则。本研究通过阐明区分人类和机器生成文本的方法,为正在进行的人工智能生成内容讨论做出了贡献。该研究深入研究了音节数、单词长度、句子结构、功能词使用和标点符号比率等参数,以检测人工智能生成的文本。此外,该研究还整合了可解释人工智能 (xAI) 技术——LIME 和 SHAP——以增强机器学习模型预测的可解释性。该模型表现出色,准确率达到 93%。利用 xAI 技术,进一步揭示了 Herdan 的 C、MaaS 和 Simpson 指数等关键属性在分类过程中发挥了主导作用。
帕金森氏病(PD)是由基底神经节(BG)地区的细胞死亡引起的长期进行性的神经衰落疾病[1]。细胞死亡会导致多巴胺的缺乏效率,这负责控制人体运动[2,3]。结果,大脑中的通信模式受到影响[4]。PD会影响60岁以上的人们[5]。PD的特征是主要症状,包括僵硬,心动肌症[6],静肌震颤[7,8],僵化[9]和睡眠障碍[10]。因此,越来越多地使用深脑刺激(DBS)手术,以减轻病情恶化或不再对药物治疗反应的晚期PD患者的症状[11-13]。dbs是一种介入的介入,该处理包括电极在丘脑下核(STN)[14]或GLOBUS PALLIDUS(GPI)[15,16]的内部段中的植入,以便为这些特定的靶标提供高频率电脉冲[17]。因此,DBS铰链对在大脑中定位靶构型的有效治疗作用具有高精度,例如,相邻功能区域的刺激已被证明会对运动,情绪和认知功能引起不利的副作用[18]。此外,DBS电极的不准确定位导致多达40%的术后刺激有效性的病例[19,20]。发现STN内部的背外侧体感区域是为PD患者应用刺激的最佳场所[21]。用于计划电极插入轨迹的最常见方式包括磁共振成像(MRI)和计算机断层扫描(CT)扫描[22]。然而,由于神经影像的分辨率限制[23],术中指导的其他辅助信息至关重要。因此,MER在DBS手术期间的实时测试中用于验证计划的轨迹,以实现目标结构内电极的最佳定位[24]。此外,使用MER信号对STN边界及其周围结构的术中划定可以通过克服大脑变形并解释由于脑玻璃体流体泄漏引起的解剖学转移来减少靶向误差[25]。MER允许在尖端大小约1升M的最接近电极附近捕获神经元的外电活动,然后,在通过扬声器聆听信号的同时,通过训练有素的神经科医生和/或神经外科医生在术中推断时间域行为[26]。尽管如此,对STN分割的MER信号的心理解释面临着几个挑战,例如,它们是非平稳的,具有复杂的信号模式[27]。此外,由于存在来自多个来源的伪影,例如手术室中的设备,患者言语,电极运动和血液[26]。此外,包括STN的解剖学挑战较小(约4*7*9毫米),大脑深处,并被结构包围,例如,底睾丸(SNR)和Zona Incerta(Zi)[28]。热热,从STN到SNR的不间断过渡和白质间隙的存在可能导致错误的标签
复杂的大语言模型的出现,例如Chatgpt和其他AI驱动的平台,导致了近距离模仿人类写作的文本的产生,这使得识别它是人类生成还是AI生成的内容非常具有挑战性。这对内容验证,学术完整性和检测误导性信息构成了重大挑战。为了解决这些问题,我们开发了一个分类系统,以使用多样化的HC3英语数据集区分人体编写的文本和a-ager of a-aged文本。此数据集利用语言肛门和结构特征,包括一部分语音标签,词汇大小,单词密度,词密度,具有被动的语音用法以及可读性指标,例如验收的读数,验阅读便捷,引起式和爆发性。我们采用了基于变压器和深入学习的模型来完成策略任务,例如CNN_BILSTM,RNN,BERT,GPT-2和ROBERTA。其中,罗伯塔模型表现出了优越的表现,其出色的精度为99.73。这些结果表明了尖端深度学习方法如何在数字领域中提出信息完整性。
f t d t ti f t i ifi ti t h hi特征检测,特征分类,立体声匹配,运动描述符,形状提示和表示图像/视频内容。g o o
本研究重点利用先进的深度学习技术对 MRI 图像进行特征检测,利用全面的脑肿瘤分割 (BraTS) 2018 数据集,其中包含 3,588 张 MRI 图像。本研究突出介绍了 You Only Look Once 版本 8 (YOLOv8) 算法的应用,该算法因其在复杂图像分析中出色的实时处理和准确性而被选中。该方法涉及详细的数据收集和精确的注释过程,采用 RoboFlow 进行高效的数据标记。该模型的训练经过精心设计,以平衡最佳学习和防止过度拟合。值得注意的是,该模型实现了 97.9% 的平均精度 (mAP),在 MRI 图像中的特征检测中表现出很高的准确性和可靠性。本文强调了 YOLOv8 在医学成像中的功效,并为医疗诊断中不断发展的人工智能领域做出了贡献。
摘要:局部人为大气 CH 4 源具有高度不确定性,且随时间变化。机载遥测是检测和量化这些排放的有效方法。在活动背景下,通过实时检索,操作员可以协调最活跃区域的多个测量,从而显著提高科学产量。这可以改善单平台和多平台任务的科学成果。我们描述了 2014 年 6 月和 8 月/9 月在加利福尼亚州进行的 NASA/ESA 二氧化碳和甲烷实验 (COMEX) 活动的案例研究。COMEX 是一个多平台活动,用于测量从人为源(包括石油和天然气基础设施)释放的 CH 4 羽流。我们讨论了实时光谱特征检测和测量的原理,并报告了 NASA 下一代机载可见红外光谱仪 (AVIRIS-NG) 的性能。 AVIRIS-NG 成功以 Gb s � 1 的数据速率实时探测到了 CH 4 羽流,并与其他现场和远程仪器协同表征了逃逸性排放。团队利用这些实时 CH 4 探测来协调多个平台的测量,包括机载现场、机载非成像遥感和地面现场仪器。据我们所知,这是首次在机载科学活动中使用实时痕量气体特征检测,预示着未来的许多应用。事后分析表明,匹配的滤波方法可提供噪声等效 (1 � ) 检测灵敏度,1.0 % CH4 柱增强相当于 141 ppm m。