是针对一个问题,即经典视觉大满贯系统的鲁棒性受到环境中动态目标特征点的极大影响,提出了一种使用目标检测算法来识别和消除动态目标特征点的方法。首先,使用目标检测算法yolov5识别收集的环境图像,然后选择周围环境。对象被识别为环境中的动态目标,然后将目标检测结果集成到视觉猛击前端的特征提取中,删除了提取图像特征点的动态目标部分的特征点,其余的静态特征点用于映射构造和定位,并在TUM DATA集合上进行测试。结果表明,在使用目标检测算法来消除动态特征点后,在高度动态的场景中,视觉SLAM系统的绝对轨迹误差的根平方误差将减少97.89%,从而有效提高了系统的定位准确性和鲁棒性。
摘要:SLAM是一种至关重要的技术,用于实现无人车辆的自主导航和定位。传统的视觉同时本地化和映射算法建立在静态场景的假设上,从而忽略了动态目标在现实世界环境中的影响。来自动态目标的干扰可以显着降低系统的定位精度,甚至导致跟踪故障。为了解决这些问题,我们提出了一个名为S-Slam的动态视觉大满贯系统,该系统基于“同样和语义信息提取”。最初,引入了词汇描述符来描述定向的快速特征点,从而提高了特征点匹配的精度和速度。随后,fasternet替换了Yolov8的骨干网络以加快语义信息提取。通过使用DBSCAN聚类对象检测的结果,获得了更精致的语义掩码。最后,通过利用语义面膜和表现约束,可以辨别和消除动态特征点,从而仅利用仅利用静态特征点进行姿势估计,并构建了不包括动态目标的密集3D地图。在TUM RGB-D数据集和现实世界情景上进行了实验评估,并证明了拟议算法在滤除场景中的动态目标方面的有效性。与Orb-Slam3相比,TUM RGB-D数据集的本地化准确性提高了95.53%。针对经典动态大满贯系统的比较分析进一步证实了通过lam的定位准确性,地图可读性和鲁棒性的提高。
视觉导航是机器人技术中的基本问题之一。在过去十年中,这一领域取得了许多重要贡献。截至目前,基于特征点的方法最为流行。虽然这些方法在许多应用中都取得了成功,但无纹理环境对于这些方法来说可能存在很大问题,因为在这些场景中可靠的特征点数量通常很少。尽管如此,边缘可能仍然大量可用,但却未被使用。在本论文中,我们提出了互补的基于边缘的方法,用于视觉定位、映射和密集重建,这些方法在理论上最小的场景配置中仍可运行。从稀疏立体边缘匹配开始,我们提出了两种具有不同性能/效率权衡的技术,它们都针对实时操作。除了与流行的密集立体技术进行比较之外,我们还将这些算法与我们对基于线段的立体方法的有效改编进行了比较。谈到立体视觉里程计,我们提出了一种基于线段的重新投影优化方法,该方法能够在无纹理环境中发挥作用,而经过验证的最先进的基于特征点的方法则无法发挥作用。我们认为,我们的方法甚至可以应对理论上最小的情况,即仅由两个非平行线段组成。然后,我们将这种方法扩展为基于完整线段的同时定位和映射解决方案。使用捆绑调整,我们能够
抽象的视觉同时本地化和映射(VSLAM)技术可以为关键任务提供可靠的视觉定位和映射功能。现有的VSLAM可以在静态环境中提取准确的特征点,以进行匹配和姿势估计,然后构建环境图。但是,在动态环境中,随着对象的移动,VSLAM系统提取的特征点将变得不准确,这不仅会导致跟踪故障,而且还严重影响了环境图的准确性。为了减轻这些挑战,我们提出了一种基于Yolov8的动态目标感光流量跟踪方法。首先,我们使用Yolov8来识别环境中的移动目标,并提出了一种消除动态轮廓区域中动态点的方法。其次,我们使用光流膜方法来识别目标检测对象框架之外的动态特征点。第三,我们全面消除了动态特征点。最后,我们结合了静态图点的几何和语义信息,以构建环境的语义图。我们使用ATE(绝对轨迹误差)和RPE(相对姿势误差)作为评估指标,并将原始方法与我们在TUM数据集上的方法进行了比较。我们方法的准确性显着提高,尤其是Walking_xyz数据集的96.92%。实验结果表明,我们提出的方法可以显着改善高动态环境下VSLAM系统的整体性能。
MTCNN(多任务级联神经网络)可检测图像/视频中的面部和面部特征点。该方法由他们的论文[8]在参考文献中提出。MTCNN 的整体概念可分为三个层次,其中,在三分之一层次中,面部检测和面部特征点同时完成。这些层次包括具有不同复杂度的不同 CNN。MTCNN 三个层次的更简单解释如下:在第一层,MTCNN 创建多个帧,从左上角开始扫描整个图像,最终向右下角前进。数据检索系统称为 P-Net(提议网络),这是一个浅层、完全相关的 CNN。在第二层,来自 P-Net 的所有数据都用作 CNN 的下一层 R-Net(细化网络)的输入,这是一个完全相关的复杂
摘要:驾驶员疲劳检测研究对提高驾驶安全具有重要意义。为提高检测准确率,本文提出一种基于面部特征点的驾驶员疲劳实时综合检测算法,利用面部视频序列检测驾驶员疲劳状态,无需在驾驶员身上配备其他智能设备。构建任务约束的深度卷积网络,基于68个关键点检测人脸区域,解决各任务收敛速度不同导致的优化问题。根据实时人脸视频图像,基于面部特征点计算眼部纵横比(EAR)、嘴部纵横比(MAR)和闭眼时间百分比(PERCLOS)眼部特征。建立驾驶员疲劳综合评估模型,通过眼部/嘴部特征选择评估驾驶员疲劳状态。经过一系列对比实验,结果表明,该算法在驾驶员疲劳检测的准确率和速度上均取得了良好的效果。
摘要:随着在自动驾驶领域的同时定位和映射技术的发展,当前的同时定位和映射方案不再是单个传感器,并且正在朝着多传感器融合的方向发展,以增强ro骨和准确性和准确性。在这项研究中,提出了一种基于相机,LIDAR和IMU的多传感器融合的定位和映射方案,称为LVI融合。不同的传感器具有不同的数据采集频率。为了解决异质传感器数据紧密耦合中时间不一致的问题,时间对齐模块用于对齐激光雷达,相机和IMU之间的时间戳。图像分割算法用于分割图像的动态目标并提取静态关键点。同时,进行了基于静态关键点的光流跟踪,并提出了强大的特征点深度恢复模型,以实现对特征点深度的强大估计。最后,LIDAR约束因子,IMU前综合约束因子和视觉约束因子共同构造使用基于滑动窗口的优化模块处理的误差方程。实验结果表明,所提出的算法具有竞争力和鲁棒性。
摘要:建筑物的三维地理参考数据对于地籍、城市和区域规划、环境问题、考古学、建筑、旅游和能源等许多应用都非常重要。现有数据库的获取和更新非常耗时,需要专门的设备和对原始数据的大量后期处理。在本研究中,我们提出了一种基于立体摄像机的城市区域数据系统,用于重建 3D 空间并随后与有限的大地测量进行匹配。所提出的立体系统以及用于两个摄像机中的边缘检测和特征点匹配的图像处理算法允许在摄像机坐标中重建 3D 场景。与可用的大地测量数据的匹配允许在世界坐标上映射整个场景并重建真实世界的距离和角度测量。
关键词:立体匹配,半全局匹配,SIFT,密集匹配,视差估计,普查 摘要:半全局匹配(SGM)通过平等对待不同路径方向进行动态规划。它没有考虑不同路径方向对成本聚合的影响,并且随着视差搜索范围的扩大,算法的准确性和效率急剧下降。本文提出了一种融合SIFT和SGM的密集匹配算法。该算法以SIFT匹配的成功匹配对为控制点,在动态规划中指导路径,并截断误差传播。此外,利用检测到的特征点的梯度方向来修改不同方向上的路径权重,可以提高匹配精度。基于 Middlebury 立体数据集和 CE-3 月球数据集的实验结果表明,所提算法能有效切断误差传播,缩小视差搜索范围,提高匹配精度。