两次火星探测任务旨在利用拉曼光谱仪等仪器探测生物分子作为灭绝或现存生命的标志。然而,关于拉曼可检测生物分子在火星环境中的稳定性仍有许多未知数,这影响了对结果的解释。为了量化拉曼可检测生物分子的稳定性,我们将七种生物分子暴露在国际空间站外的模拟火星环境中 469 天。紫外线辐射 (UVR) 强烈改变了拉曼光谱信号,但当样品被屏蔽以免受紫外线照射时,只观察到微小的变化。这些发现为在火星地下寻找生物特征的火星任务操作提供了支持。该实验证明了在太空暴露后通过拉曼光谱在火星风化层类似物中检测生物分子的可检测性,并为在目标环境中建立经过太空验证的光谱生物特征综合数据库奠定了基础。
作者贡献项目协调:I.B。写作小组:J.C.,C.N.S,G.M.,A.V.,L.J.C,S.C.J.P.,K.L.M.,C.L.,C.L.,E.W.,A.P.M.,I.B。中央分析小组:J.C.,C.N.S,G.M.,A.V.,L.J.C,J.L. T.L.,W.M.,H.M-M.,A.N.,S.C.N.,K.N.,C.K.R. I.P.,A.L.,CT.L.,S.C.J.P.,K.L.M.,C.L.,E.W.,A.P.M.,I.B。cohort分析师:T.S.A.,E.Vr.A.,L.F.B.,J.A.B.,N.P.B.,C.P.P.C.,B.E.C.,J.C.,J.C. S.A.F.,J.G.,F.G.,J.G.,S.G.,Y.H.,F.P.H.,J.H.,Y.H.,T.H.,A.H.,M.H.,M.H.,R.A.J.,T.K.,T.K. S.L.,J.L.,M.L.,J.L.,V.L.,M.M.,C.M.,M.E.M.,A.N.,M.N.,D.N.,D.N.,R.N.,G.P.,M.P.,M.P.,M.P.,L.J.R. T.S.cohort基因分型和表型:N.A.,Z.A.,A.A.,S.JL.B.,D.B.,M.B.,R.N.B.,A.B.,A.B.,M.B.,L.L.L.B.,S.R.B.,S.R.B.,S.R.B.,S.R.B. A.F.,M.F.,C.F.,Y.G.,A.P.G.,A.G.,S.H.,C.A.H. W.K. J.M.N.,Y.O.,A.P.,P.A.P.,O.P.,Q.Q.,D.R.,D.F.R.,A.R.,A.R.,F.R.,K.R.,I.R.,I.R. A.U.,R.M.V.,D.V.,A.V.,J.V.V.,J.V.,H.V.,T.W.,K.W.,T.Z.同时监督和/或主要研究人员:G.R.A.,L.S.A.,C.Albertoa。 M.J.C.,J.C.C.,D.I.C.,Y.C.,C.C.,F.S.C.,A.C.,A.C.,F.C.,H.D.,G.D.,G.D.,S.E. S.G.,L.G.,V.G.,X.G.,A.H.,T.H.,C.H.,S.R.H.,B.L.H.,W.H.,E.II.I.I.,P.S.J. J.S.K.,A.K.,P.K.,D.K.,M.K.,M.L.,T.A.L. A.J.O.,K.K.O.,S.P.,C.N.A.P.,N.D.P.,O.P.,C.E.P.,C.E.P.,D.J.P.,P.P.P.P.P.P.,M.A.P. L.J.S.,E.S.,P.S.,X.S.,P.Elines,K.S.S.,B.H.S.,H.S. T.GM.V.,L.E.W.,M.W.,Y.X.W.,N.J.W.,R.M.W.,R.M.W.,H.W.,W.B.W.,A.R.W.,A.R.W.,G.W.,J.F.W.,J.F.W.,T.W.,T.W.,T.W.,T.W. A.L.G.,M.I.M.,J.D.,J.B.M.,R.A.S.,I.P.,A.L.,C.L.,C.L.,S.CJ.P.,K.L.M.
探地雷达 (GPR) 是一种成像系统,可用于观察现场地下情况,以研究土壤的层组成或埋藏物体的存在。由于地面的电磁特性,此类图像通常具有非常低的信噪比 (SNR)。此外,根据设计,埋藏物体被观察为双曲线,其形状可能与物体类型(例如空腔或管道)相关联。在这种情况下,埋藏物体的分类在民用应用中非常重要,例如恢复埋藏天然气管道的位置 [1] 或军事应用,例如地雷探测 [2]。为了进行这种识别,一些研究考虑使用信号反演技术 [3] 来提高 SNR,以便地球物理学家进行手动解释。当需要处理大量图像时,这种解决方案可能不切实际,因为它需要专门的人力资源。因此,自动识别方法已成为必需,并受到社区的关注。GPR 信号的自动分类分两步进行。首先,感兴趣区域(ROI)对应于
1医学心理学和医学社会学研究所,大学医学中心,施莱斯康大学,基尔大学,24118德国24118儿童和青少年精神病学系,中央心理健康研究所,曼恩海姆医学院,海德伯格大学,海德尔伯格大学医学院海德堡大学医学院曼海姆,Square J5,68159,德国曼海姆4 4 4纪律,医学院和三一学院神经科学学院,都柏林三一学院,都柏林2号,爱尔兰三一学院WC2R 2LS,英国6 Neurospin,CEA,CEA,典型巴黎 - 萨克莱大学,91191 GIF-SUR-YVETTE,法国7号Gif-Sur-Yvette,7精神病学和心理学部,佛蒙特州伯灵顿大学,佛蒙特州05405,美国8号,美国8号彼得·曼斯·曼斯·曼斯·曼斯·菲尔德(Peter Mansing)的物理学和天文学的彼得·曼斯·曼斯·曼斯·曼斯(Peter Mans)爵士。精神病学和心理疗法CCM和柏林卫生研究院,慈善 - 伯林市,伯林大学的公司成员精神病学和心理治疗,大学医学中心Göttingen,von-Siebold-STR。5, 37075 Göttingen, Germany 12 National Institute of Sant and Research M É Dicale, Inserm U A10 “Trajectories of Veloppemental in Psychiatry”, University of Paris-Saclay, Ecole Normale Supée Paris-Saclay, CNRS, Center Borelli, 91190 Gif-Sur-Yvette, France 13 Department of Child and Adolescent Psychiatry, Piti é-salpê-salpêtri医院,AP-HP Sorbonne大学,75013法国巴黎14精神病学系,EpsBarthéLeMy My Durand,Gif-Sur-Yvette,Gif-Sur-Yvette,91150 ETAMPES,法国ETAMPES,15埃特普斯,15 In. Drive,贝塞斯达,马里兰州20892,美国17 MSB医学院柏林,HochschuleFürGesundheitund Medizin und Medizin und Medizin,西蒙斯别墅,14197,德国柏林,德国18号,多伦多,多伦多,多伦多,多伦多,M5T 2S8,M5T 2S8,加拿大加拿大199号,加拿大的Canca and Toronto of Toronto and Canca and Canca and Canca and Canca and Canca and Canca and Canca and Canca and Canca and Canca and Canca and Canca and Canca Canca Psychosocial Adolescent Services Outpatit Clinic Kauppakatu 14, 15140 Lahti, Finland 21 Department of Psychiatry, Neuroimaging Center Universität Dresden, 01069 Dresden, Germany 22 School of Psychology, Global Brain Health Institute, Trinity College Dublin, Dublin 2, Ireland 23 Pons Research Group, Department of Psychiatry and Psychotherapy, Campus Charite Mitte,洪堡大学,10117柏林,德国神经生物学,39118德国玛格德堡25号脑启发的智能科学技术研究所(ISTBI),福丹大学,上海200437,中国 *通信:
摘要:高纵横比聚合物材料广泛应用于从服装等日常材料到工业和医疗领域的专用设备等各种应用领域。传统的制造方法,如挤压和模塑,在整合各种材料和实现复杂几何形状方面面临挑战。此外,这些方法在提供低成本和快速原型设计方面的能力有限,而这对于研发过程至关重要。在这项工作中,我们研究了使用市售的 3D 打印机来制造纤维预制件,然后将其热拉成纤维。通过优化 3D 打印参数,我们成功制造了直径小至 200 µm 且形状复杂、特征精确到几微米的纤维。我们通过从各种材料中制造纤维(例如具有不同刚度的纤维和具有磁性的纤维)证明了这种方法的多功能性,这有利于开发肌腱驱动和磁驱动的机器人纤维。此外,通过设计新颖的预制件几何形状,我们生产了锥形纤维和具有互锁机制的纤维,也适用于医疗可控导管应用。这些进步凸显了这种方法的可扩展性和多功能性,为生产用于各种应用的高精度聚合物纤维提供了一个强大的平台。关键词:增材制造;3D 打印;预制件制造;热拉伸;多材料纤维;功能纤维;纤维致动器
抽象糖尿病(DM)是全球最广泛的非传染病之一。尽管在诊断出糖尿病后12小时后,禁食等离子体葡萄糖测试可以诊断糖尿病,但无法逆转。因此,确定预测糖尿病的早期指标至关重要。目前,可以通过涉及分析人类面部特征的各种方法来识别DM。糖尿病中面部识别的一种方法取决于实验证据,其准确性取决于医师的技能和专业知识。另一种方法涉及基于面部形态特征的诊断。这些形态学变化可能归因于氧化应激,血管和胶原蛋白,水肿和颅面异常的损害,这是由于高血糖。虽然头部学分析仍然是诊断骨骼颅面形态的黄金标准,但它是一种昂贵且对技术敏感的程序。基于人工智能(AI)的面部识别已被证明是诊断和筛查糖尿病的宝贵工具。它的简单性,准确性和成本效益的结合使其成为医疗保健局势的有前途的补充,最终导致了临床前诊断的进步,并导致患者的结果增强。鉴于糖尿病的全球迅速增加,糖尿病早期检测的重要性以及有关面部识别在这方面的作用的有限信息,本研究使用AI方法通过面部特征评估糖尿病。关键字:人工智能,糖尿病,面部识别,氧化压力
背景:基本震颤(ET)代表了一种异质疾病,即使在早期阶段也可以通过共享一些细微的临床方面,可能与帕金森氏病(PD)重叠。长期存在的ET也证明了开发PD的风险更高,尤其是在震颤(TD-PD)表型中。因此,ET和早期PD之间的不同诊断可能非常具有挑战性。光学相干断层扫描(OCT)已被认为是评估视网膜作为神经变性代理的可靠工具。我们旨在探讨视网膜评估在ET和早期PD之间差异诊断中的可能作用。方法:使用OCT评估了ET,早期PD和健康对照(HCS)之间的黄斑层和围绕乳头状视网膜神经纤维层(RNFL)厚度。结果:分析了来自ET的23个ET的42只眼睛,来自21个PD的41只眼睛,分析了17个HC的33只眼睛。与ET相比,PD 黄斑RNFL,神经节细胞层,内丛状层和内部核层更薄。 在考虑TD-PD亚组时,ET和PD之间的差异更为明显,尤其是RNFL。 在ET患者中,内部黄斑层的厚度在发作时与年龄和疾病持续时间都显示出负线性关系。 与HC相比,在ET中发现了近叶颞象限变薄。黄斑RNFL,神经节细胞层,内丛状层和内部核层更薄。在考虑TD-PD亚组时,ET和PD之间的差异更为明显,尤其是RNFL。在ET患者中,内部黄斑层的厚度在发作时与年龄和疾病持续时间都显示出负线性关系。 与HC相比,在ET中发现了近叶颞象限变薄。在ET患者中,内部黄斑层的厚度在发作时与年龄和疾病持续时间都显示出负线性关系。近叶颞象限变薄。
地址:巴西Cascavel,Paraná电子邮件:fabiana.pinto@unioeste.br摘要精油(EOS)已获得了具有治疗潜力的生物活性化合物来源的突出,尤其是在抗药性抗药性方面,抗药性抗药性,全球公共卫生问题,这是一个不断增长的全球公共卫生问题。不当使用常规抗菌药物已经加剧了这个问题,从而越来越紧急寻找有效的天然替代品。在这种情况下,巴西具有广阔的生物多样性,代表着丰富的植物来源,其精油可能具有重要的抗菌特性。肉桂木霉(Cinnamomum amoenum)是肉桂属中的一种物种,以其药理特性(包括抗菌活性)而被认可。这项研究旨在使用气相色谱 - 质谱法(GC-MS)确定AmoEnum C. amoenum的EO的化学组成,并通过肉汤微稀释技术评估其抗菌活性。对Amoenum eo的分析显示了29种化合物,并以桃菌醛(13.88%),十六进制(11.32%)和β-蛋黄蛋白酶(9.32%)为主。EO对所有测试的革兰氏阳性细菌表现出抗菌活性,最小抑制浓度(MIC)范围从7,000 µg/ml到1,750 µg/ml。它还表现出针对肠菌沙门氏菌的杀菌性和抑菌活性,以及针对白色念珠菌的抗真菌活性,以相同的浓度。这些发现表明,肌动蛋白酶的EO是抗菌化合物的有前途的来源,在抵抗抗菌抗性的斗争中脱颖而出。关键词:抗菌活性,多耐病病原体,天然抗菌药物,植物生物活性剂。总结精油已成为具有治疗潜力的生物活性化合物的有前途的来源,尤其是在打击抗菌耐药性时,A
这项研究通过将深度神经网络(DNN)模型与基于特征的融合整合在一起,介绍了一种创新的药物配方优化方法。该研究利用各种数据集,包括分子数据库,生物反应数据集和药代动力学信息,以对影响生物系统中药物行为的复杂因素进行整体理解。DNN模型以其处理高维数据和捕获复杂关系的能力而被选为基于特征的融合,以增强药物制剂的认知策略。在10个试验中进行的模型的定量评估产生了令人鼓舞的结果。DNN模型表现出值得称赞的性能,平均精度为91.8%,精度为89.2%,召回93.5%,F1得分为91.3%。但是,基于特征的融合方法始终优于DNN,平均准确度为93.5%,精度为91.7%,召回94.6%,F1得分为92.8%。这些结果突出了基于特征的融合方法在优化药物制剂,展示更高的定量指标以及精确度和召回之间更加平衡的权衡方面的优越性。这项研究通过提供一个结合高级认知策略的强大框架来推动药物制定领域,从而有助于更有效和个性化的治疗干预措施。
研究文章|行为/认知在稳定固定和主动视觉期间的刺激特征的表示https://doi.org/10.1523/jneurosci.1652-24.2024收到:2024年9月1日修订:2024年11月7日接受:2024年11月25日接受:2024年11月25日,2024年2月25日Moran Moran Et an。这是根据Creative Commons Attribution 4.0国际许可条款分发的开放访问文章,只要将原始工作正确归因于任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制。