我们已经研究了通过重复热预处理和负电子亲和力(NEA)激活周期制备的GAAS表面的光发射特性。表明,光发射效率随预处理序列发生了巨大变化。我们已经用两个具有不同量子效率的GAAS样品讨论了光发射特性,并发现量子效率随预处理序列的变化与量子效率的绝对值无关。此结果表明电子的发电和传递和发射是独立的过程。我们还讨论了新型的NEA激活方法,该方法有望改善光发射特性。I.引言碱金属在半导体表面上的吸附是从科学和实践的角度来看的重要系统,并且多年来已经对许多人进行了研究。例如,当电子亲和力的GaAS半导体大约为4 eV,因为大量条件会通过CS的交替供应和O 2(或NF 3)的交替激活,其表面的真空水平位于大量导带以下,并且该条件定义为负电子亲和力(NEA)。当光子能量在GAAS带隙能(E G = 1.4 eV)附近的激发灯照亮表面时,Valence Electron会激发到最小的传导带,并可以轻松逃脱到真空中。NEA-GAA具有很大的优势,例如自旋极化,低发射率,短束和高量子效率(QE)电子束,并且NEA-GAAS表面已被用作1970年代1的加速器的光(1)。碱金属在GAAS表面上的吸附已被广泛应用于各种场,但尚未详细阐明其吸附结构和光发射机制。将光发射过程的定性或现象学解释提出为Spicer的三个步骤模型2),并且吸附结构由多种模型(例如Hetero Junction,cluster或偶极模型3,4)预测。很难用碱金属和氧原子的几个单层观察到实际的NEA结构,因为在真空中,热环境和残留气体很容易降解NEA-GAAS表面。这些结构变化降低了NEA-GAAS光电的性能。最后,我们将简要提出新型的NEA激活方法。有可能改善光发性属性。
产品特性概述 1. 药品名称 Bifril Plus 30 mg/12.5 mg 薄膜包衣片 2. 定性和定量组成 每片薄膜包衣片含 28.7 mg 佐芬诺普利(30 mg 佐芬诺普利钙和 12.5 mg 氢氯噻嗪)。 已知作用的辅料: 每片薄膜包衣片含 56.20 mg 乳糖一水合物。 有关辅料的完整列表,请参阅第 6.1 节。 3. 药物形式 薄膜包衣片。 淡红色、圆形、略微双凸的 9 mm 片剂,一侧有刻痕线。 刻痕线仅用于方便折断以方便吞咽,而不是用于分成相等的剂量。 4. 临床特点 4.1 治疗指征 治疗轻度至中度原发性高血压。这种固定剂量组合适用于单用佐芬诺普利无法充分控制血压的患者。 4.2 用法用量和给药方法 用法用量 成人 在改为固定剂量组合之前,建议先使用各个成分(即佐芬诺普利和氢氯噻嗪)进行剂量滴定。当临床情况适当时,可以考虑直接从单一疗法改为固定组合。 无容量或盐分缺乏的患者 通常的有效剂量是每天一次,每次一片。 疑似容量或盐分缺乏的患者 不建议使用 Bifril Plus。 老年人(65 岁以上) 肌酐清除率正常的老年人无需调整剂量。肌酐清除率降低(低于 45 mL/min)的老年人不建议使用 Bifril Plus。
为确保与 Suiseng Diff/A 正确混合,应使用相同体积的 Suiseng Diff/A 和 Suiseng Coli/C。应将 Suiseng Coli/C 的所有内容物转移到 Suiseng Diff/A 的顶空瓶中(50 毫升瓶装 10 剂,100 毫升瓶装 25 剂,250 毫升瓶装 50 剂)。可按照以下说明使用预先消毒的转移针: - 剥去装有 Suiseng Coli/C 疫苗的瓶子的盖子。 - 将转移针的一端连接到 Suiseng Coli/C 的瓶子上。 - 剥去装有 Suiseng Diff/A 疫苗的顶空瓶的盖子。 - 将转移针的另一端连接到 Suiseng Diff/A 的瓶子上。 - 将 Suiseng Coli/C 的所有内容物转移到 Suiseng Diff/A 瓶中。 - 完成后,分开两个瓶子并丢弃转移针。
动机:复合层压板和纺织品所需的剪切试验改进 – 高剪切强度 – 粗糙结构需要更大的量规截面 目标:测量剪切模量和剪切强度 方法:结合现有剪切试验的吸引人的特点 – 约西佩斯库剪切 (ASTM D 5379) – 双轨剪切 (ASTM D 4255)
图片 在 Postlab 报告文档中粘贴图片(例如草稿、草稿、截图、照片等)(仅接受 .docx、.doc 或 .pdf 格式)。如果图片尺寸过大,请先将其转换为 jpg/jpeg 格式,然后将其粘贴到文档中。
近年来,微电子技术发生了巨大的变化,现代 CMOS 技术使集成电路的性能和复杂性稳步提高。图 1(a) 显示了传统 n 型体硅 MOSFET 的示意图,它由 p 型衬底内重度 n 型掺杂的源极和漏极区组成。此外,MOSFET 的栅极电极长度为 L,宽度为 W,栅极电极通过厚度为 d ox 的绝缘体(通常为 SiO 2 )与体硅衬底绝缘。源极-通道和通道-漏极界面处的两个 pn 结(见图 1(b))可防止电流从源极流向漏极。施加正栅极电压 V gs > V th ,会在通道/栅极氧化物界面处创建反型层(p 型衬底中的电子)。在这种情况下,如果施加额外的漏极-源极偏压 V ds,电流就可以流过该器件。
挤出1吨原材料。此值乘以一个允许确定CO 2等效的因素。此计算表明在挤出步骤中释放的110千克CO 2量。总计(对于Kaysersberg):2.11吨每吨Akylux,Akyplen或Akyboard挤出。聚丙烯的优势是其可回收性。通过回收材料并在其他作品中使用材料,碳足迹大大降低。例如,通过挤出1吨含有30%回收材料的PP,释放的CO 2的量为1.53吨,通过挤出100%回收PP释放的CO 2释放量为0.18吨。此信息仅用于一般信息。本文档中包含的信息基于从我们的供应商中选择的数据。根据我们的最佳知识和发表时,此信息是真实而准确的。客户有责任检查和测试我们的产品,以使自己满足于产品对客户的特殊目的的适用性。在任何情况下都不得构成或暗示任何保证,从我们的角度承担明示或暗示的承诺。
摘要:Singlet Pission(SF)已被探索为通过产生更多激子来改善光伏性能的可行途径。通过高度的鸡际耦合实现了有效的SF,从而有助于电子超级交换以产生三重态。然而,强烈耦合的发色团通常会形成准分子,可以用作SF中间体或低能陷阱位点。然而,随后的破坏性过程需要最佳的电子耦合,以促进最初准备的相关三重态对孤立的三重态生产。构象柔韧性和介电调节可以通过调节鸡际表的电子相互作用来提供调整SF机制和效率的方法。在密集堆叠的传统有机固体中,这种策略不能轻易采用。在这里,我们表明SF活性发色团的组装周围定义明确的溶液稳定金属 - 有机框架(MOF)可以是模块化SF工艺的绝佳平台。一系列三个新的MOF,由9,10-双(乙烯烯基)蒽衍生的支柱建立,显示了拓扑定义的堆积密度和炭疽核的构象柔韧性,以决定SF机制。各种稳态和瞬态光谱数据表明,最初制备的单线种群可以偏爱准分子介导的SF或直接SF(均通过虚拟电荷转移(CT)状态)。这些溶液稳定的框架提供了介电环境的可调性,以通过稳定CT状态来促进SF过程。鉴于MOF是各种光物理和光化学发展的理想平台,因此产生大量长寿三胞胎可以在各种光子能量转换方案中扩展其实用程序。
