图 1 MRE 成像和分析程序概述。第一步,通过气动驱动系统(Resoundant;明尼苏达州罗切斯特)将 50 Hz 的剪切波引入大脑。使用嵌入在 MRE 螺旋序列中的运动编码梯度捕获由此产生的组织变形,并沿三个独立轴(前 - 后、右 - 左和上 - 下)捕获位移数据。位移数据连同二元脑掩模一起提供给非线性算法,该算法将组织建模为异质粘弹性材料。子区域优化程序用于迭代更新有限元计算模型中的属性描述,以最小化模型位移和测量位移数据之间的差异。最后,将复杂剪切模量图转换为剪切刚度 μ = 2 j G * j 2/( G ' + j G * j ) 和阻尼比 ξ = G 00 /2 G 0 。提供特定主题的 T1 加权 MPRAGE 和 MRE T2 幅度图像,以说明空间标准化程序所需的图像
采用Nb含量为25 wt%的混合粉末,通过选择性激光熔化(SLM)原位制备了一种具有定制微观结构、增强力学性能和生物相容性的钛铌(Ti-Nb)合金。研究了激光能量密度从70 J/mm 3 到110 J/mm 3 对SLM打印Ti-25Nb合金的相变、微观结构和力学性能的影响。结果表明,110 J/mm 3 的能量密度可使合金的相对密度最高且元素分布均匀。通过X射线衍射和透射电子显微镜鉴定了具有[023]β//[-12-16]α'取向关系的α'和β相,它们的比例主要取决于激光能量密度。随着能量密度的增加,由于冷却速度降低、温度梯度增大,Ti-25Nb合金的组织由针状晶粒变为粗化的板条状晶粒,再变为板条状晶粒+胞状亚晶粒。打印Ti-25Nb合金的屈服强度和显微硬度随能量密度从70 J/mm 3 增加到100 J/mm 3 而降低,在110 J/mm 3 时又升至最高值645 MPa和264 HV。力学性能的这种变化取决于α'相的粗化和β(Ti,Nb)固溶体的形成。此外,与纯Ti相比,SLM打印的Ti-25Nb合金既表现出优异的体外磷灰石形成能力,又表现出更好的细胞扩散和增殖能力。
抽象创伤性脑损伤(TBI)是全球发病率和死亡率的主要原因。tbi通常在失去运动,认知和感觉功能的人中可以看到。TBI引起严重的健康问题,例如死亡,残疾和精神疾病。TBI在世界范围内仍然是越来越多的健康问题。据估计,每年约有170万人患头部创伤,其中约有50,000人死亡。尽管在所有年龄段和人口中都可以看到TBI,但发病率最高的年龄人口是儿童和老年人。跌倒,运动活动和机动车事故是TBI的最大风险因素。要开发出创伤性脑损伤的诊断和治疗方法,应知道神经病理学下的分子和细胞机制。因此,使用了轻度,中度和严重的实验性创伤性脑损伤模型的不同模型。创伤性脑损伤的动物模型被广泛归类为局灶性,弥漫性和混合损伤。流体打击乐,受控的皮质效应,减轻体重和爆炸波是创伤性脑损伤实验研究中最优选的模型。本综述描述了当前啮齿动物脑损伤的啮齿动物模型的优势和缺点。关键词:实验性创伤性脑损伤模型,体重下降
摘要。复杂的积雪模型,例如Croscus和Snekpack,难以正确模拟北极积雪中的密度和特定表面积(SSA)的预测,这是由于风诱导的压实压实的低估,碱性植被的流动性融合量和水分流动量不足而陈述。To improve the simulation of profiles of density and SSA, parameterisations of snow physical pro- cesses that consider the effect of high wind speeds, the pres- ence of basal vegetation, and alternate thermal conductivity formulations were implemented into an ensemble version of the Soil, Vegetation, and Snow version 2 (SVS2-Crocus) land surface model, creating Arctic SVS2-Crocus.默认和北极SVS2-Crocus的合奏版本是由原位气象数据驱动的,并使用了Snowpack特性(Snow Water Eorsevent,Swe; Depth; Depth; Depth;密度;密度;密度;密度; SSA)在越野谷溪(TVC),Northwest Terrories,加拿大,加拿大,超过32岁,1991年至202年。结果表明,默认和北极SVS2-Crocus都可以模拟SWE的正确幅度(root-Mean-Square误差,RMSE,RMSE,对于两个合奏 - 55 kg m-2)和降雪深度(默认的RMSE - 0.22 M;北极RMSE - 0.18 m)在TVC上与测量值相比。在北极SVS2-Crocus内有效地压实了积雪的表面层,增加了密度,并将RMSE降低了41%(176 kg m-3至103 kg m-3)。
摘要。我们证明了由大气压化学蒸气沉积制造的硼掺杂的多晶 - 硅质(poly-si),以形成驱动的钝化接触。层有关其结晶石尺寸,电阻率和钝化特性的不同层层。从X射线衍射测量值中,定量得出的结论是,较高的射击峰温度会增加poly-SI的结晶石尺寸,最高为10 nm。这种结晶石尺寸的变化与电阻率成反比,这对于更高的发射温度而言大大降低。对于较薄的聚-SI层和较高的射击温度,发现较高的隐含开路电压(IV OC)和较低的饱和电流密度(J 0),这很可能是由于从SIN X:H层到界面氧化物的氢扩散时间差异。尽管没有观察到(p)poly-si的水泡,但在高点火温度下,sin x:h层的水泡> 900°C会损害薄层的钝化。实现了708 mV的最大IV OC和〜12 fa/cm 2的最小J 0。
沿海地区碳钢腐蚀的成本很高,从而极大地影响了这些地方的经济。 div>涂料专门在这些条件下提供了良好的钢制保护,为此,新聚合物的持续发展是基本的。 div>在设计抗腐蚀涂料的设计中,已经使用了各种无机添加剂(其中一些具有潜在环境损害的金属)和有机物作为聚合物。 div>据报道,多多素氧化物,赤二酸的共聚物,半乙烯基 - 吡咯酮和聚二烯蛋白的共聚物是抗腐败涂料的成分。 div>这项工作的目的是获得一个电导性聚合物,该聚合物增强了炼金术涂层的保护作用。 div>关键词:抗腐蚀绘画,碳钢腐蚀,电导性聚合物,腐蚀抑制剂。 div>
微电子器件的性能和可靠性受器件层内的机械应变控制。通常,这是通过从外部或内部施加均匀分布的应变来研究的。本研究的重点是 AlGaN/GaN 高电子迁移率晶体管 (HEMT),由于其压阻和压电特性,预计它对应变更敏感。因此,我们假设即使是微小但局部的应变也可能对 HEMT 的整体行为产生重大影响。为了研究这一假设,我们通过在 800 × 840 μ m 2 尺寸 HEMT 芯片背面铣削一个深度约为 70 μ m 的 20 × 30 μ m 2 微沟槽来引入高度局部的应变释放。使用微拉曼技术绘制了由此产生的平面内残余应变的局部松弛。我们的结果表明,仅 0.02% 的应变下降就可以使总输出饱和电流降低高达 ~20%。输出电流下降的原因是器件层中的应变释放导致二维电子气 (2DEG) 载流子密度和电子迁移率降低。然而,应变释放的机械过程也会导致界面产生缺陷,从而增加漏电流。我们的局部应变重新分布技术可以成为替代电子设备通道中固有局部应变累积影响的有效工具。
摘要 - 在体内种植的人工部分的材料选择过程一直是至关重要的程序。植入物的生产和施工要求将涉及从机械规格到医疗限制的各种考虑。从机械的角度来看,需要植入物表现出尽可能近的骨骼的机械性能,以降低失败的风险并为患者提供高水平的舒适度。假肢必须拥有的最大胆的医学特征是生物相容性存在的质量;意思是,它们必须被人体的生物体接受。In this paper, five common biocompatible materials as candidates for hip prostheses production namely, 316L St Steel (cold worked, ASTM F138), Co–28Cr–6Mo (cast, ASTM F75), Ti–6Al–4V (hot forged, ASTM F620), Zirconia (ceramic, 3Y-TZP) and Alumina (ceramic, ZTA)通过加权特性的方法选择和评估,以缩小搜索范围,以找到最适合真正骨骼机械性状的候选者。进行分析,考虑了六个属性,并相互加权,即弹性模量,屈服强度,拉伸强度,疲劳强度,腐蚀速率和密度。从结果中,氧化铝和不锈钢显示出最高的性能索引,但由于所需的生物相容性的重要性,因此在实用中所需的生物相容性的重要性,排名在钴和钛合金的第四和第五位的材料分别是与该行业中最可取的选择。的确,生物相容性特征超过与真实骨骼的最高机械相似性。将得出结论,在植入物材料选择过程中,WPM不能仅仅预测最佳候选人,除非将结果与有关身体对候选材料的反应的实验数据进行比较。版权所有©2015 Penerbit Akademia Baru-保留所有权利。
从 I on /I off 电流比、跨导、亚阈值斜率、阈值电压滚降和漏极诱导势垒降低 (DIBL) 等方面评估了一种新型栅极全场效应晶体管 (GAA-FET) 方案的可靠性和可控性。此外,借助物理模拟,全面研究了电子性能指标的缩放行为。将提出的结构的电气特性与圆形 GAA-FET 进行了比较,圆形 GAA-FET 之前已使用 3D-TCAD 模拟在 22 nm 通道长度下用 IBM 样品进行了校准。我们的模拟结果表明,与传统的圆形横截面相比,扇形横截面 GAA-FET 是一种控制短沟道效应 (SCE) 的优越结构,并且性能更好。2020 作者。由 Elsevier BV 代表艾因夏姆斯大学工程学院出版。这是一篇根据 CC BY 许可 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
氧化锌薄膜在室温下通过电子束蒸发在玻璃基板上生长,然后在不同温度下在250至550 c的不同温度下退火压力600 mbar退火。薄膜的电气,光学和结构特性,例如电阻率,光透射率,带隙和晶粒尺寸,这是退火温度的函数。X射线衍射表明,最大强度峰对应于(002)在各种温度下退火的ZnoFILM的主要方向。最大宽度的全宽度,在退火处理后减少,这证明了晶体质量的改善。扫描电子显微镜图像表明,通过增加退火温度,晶粒尺寸变得更大,并且该结果与X射线衍射分析一致。由Elsevier Ltd.