香港交易及结算所有限公司、香港联合交易所有限公司及香港中央结算有限公司对本文件的内容概不负责,亦不对其准确性或完整性作出任何陈述,并明确表示,对于因本文件全部或部分内容而产生或因依赖该等内容而引致的任何损失,概不负责。本文件的副本连同本文件“附录五 — 交付公司注册处处长并可供展示的文件”所列文件,已根据《公司(清盘及杂项条文)条例》(香港法例第 32 章)第 342C 条的规定,由香港公司注册处处长登记。香港证券及期货事务监察委员会及香港公司注册处处长对本文件或上述任何其他文件的内容概不负责。预计 [ 删除 ] 将由 [ 删除 ](代表其自身及代表 [ 删除 ])与我们于 [ 删除 ] 达成协议。预计 [ 删除 ] 将于 [ 删除 ] 或前后完成,且无论如何不晚于 [ 删除 ] 中午 12:00。预计 [ 删除 ] 不超过 [ 删除 ] 港元,目前预计不低于 [ 删除 ] 港元。 [ 删除 ] 的申请人于申请时须就每份 [ 删除 ] 支付最高 [ 删除 ] 港元,即 [ 删除 ] 港元,另加 1.0% 经纪佣金、0.0027% 证监会交易征费、0.00565% 联交所交易费及 0.00015% AFRC 交易征费。如 [ 删除 ] 低于 [ 删除 ] 港元,则可退还该等款项。如因任何原因,[ 删除 ](代表其本身及 [ 删除 ])与我们未能于 [ 删除 ] 中午 12 时前就 [ 删除 ] 达成协议,则 [ 删除 ] 将不会进行并会失效。 [ 删除 ] (代表其自身及 [ 删除 ] ) 可在征得我们的同意下,在 [ 删除 ] 下提交申请的最后一天上午或之前的任何时间,减少 [ 删除 ] 下提供的 [ 删除 ] 数量和/或将指示性 [ 删除 ] 范围减少到低于本文件所述的范围。在此情况下,本公司将于作出有关削减要约的决定后尽快(无论如何不迟于根据[编纂]递交申请截止日期当日早上)在联交所网站www.hkexnews.hk及本公司网站www.dualitybiologics.com刊发公告,并取消要约并按修订后的[编纂]数目及╱或修订后的[编纂]范围及上市规则第11.13条的规定(包括刊发补充文件或新文件(视情况而定))重新推出要约。有关更多详情,请参阅本文件“[ 编纂 ] 的结构”和“如何申请 [ 编纂 ] ”两节。在作出 [ 编纂 ] 决定前,潜在的 [ 编纂 ] 应仔细考虑本文件所载的所有资料,包括但不限于本文件“风险因素”一节所载的风险因素。如在 [ 编纂 ] 上午 8 时之前出现某些理由,[ 编纂 ] 可(为其自身及代表 [ 编纂 ] )终止 [ 编纂 ] 根据 [ 编纂 ] 认购 [ 编纂 ] 及促使申请人认购 [ 编纂 ] 的义务。该等理由载于本文件“[ 编纂 ] ”一节。 [ 删除 ] 未根据美国《证券法》或美国任何州证券法进行登记,也不会根据该法进行登记,不得在美国境内 [ 删除 ] 出售、质押或转让,但获豁免或不受美国《证券法》登记要求约束的交易除外。[ 删除 ] 正在 [ 删除 ] 中,并根据美国《证券法》的登记豁免规定,仅向规则 144A 中定义的合格机构出售,以及 (2) 根据美国《证券法》的 S 条例,在美国境外进行离岸交易。
我们引入神经网络作为人工智能模型之一。神经网络是生物神经细胞回路中进行的信息处理的模型。神经细胞由称为细胞体的主体、从细胞体延伸出来的树突和连接到其他细胞的轴突组成。轴突的末端附着在其他神经细胞的树突上,轴突与其他神经细胞的连接处称为突触。树突接收来自其他细胞和感觉细胞的输入信号,信号在细胞体内进行处理,并通过轴突和突触将输出信号发送给其他神经元(图2(a))。 据称大脑中的神经元数量约为 10^10 到 10^11。通过结合这些细胞,每个神经元以并行和分布式的方式处理信息,从而产生非常复杂和先进的处理。一个细胞的输出通过突触传递到其他细胞,通过轴突可以分支成数十到数百个神经元。单个细胞具有的突触连接数量从数百个到数万个不等。所有这些突触连接都有助于神经元之间的信号传输。 当一个信号从另一个神经细胞到达一个神经细胞时,膜电位会因信号而发生变化,当信号超过一定的阈值时,电位就变为正值,神经细胞就会兴奋。然后它向其他神经元发送信号。无论输入值如何,该图的形状几乎都是相同的波形,一旦超过阈值,就会产生恒定形状和幅度的电脉冲。因此人们认为,神经网络中承载信息的不是电脉冲的波形,而是电脉冲的频率(图2(b))。 细胞体的阈值函数,当输入高于阈值时,发出电脉冲,当输入低于阈值时,不发出电脉冲,具有从输入到输出的非线性转换效果。此外,还有兴奋性突触,它会释放使输入神经细胞更容易兴奋的递质,还有抑制性突触,它会使输入神经细胞更不容易兴奋。接收输入神经元可以被认为是接收来自每个输出神经元的输入的总和。 神经网络的数学模型源于对神经元的观察。 1943年,McCullough和Pitts提出了正式的神经元模型。图 2(c)中的圆圈表示一个神经元的模型。 xk 取值 0 和 1,表示该神经元接收的突触数量。
di效力MRI利用水分子不同的运动来创建反映生物组织微结构的图像,以类似于虚拟活检的非侵入性方法。最初通过实现早期诊断和有效的干预措施,这种创新最初彻底改变了急性脑缺血的管理。随着时间的流逝,DI效率MRI已成为临床和研究环境中的基石,为组织完整性,结构异常和早期发现其他模式的变化提供了关键的见解。它在研究和医学方面有广泛的应用,尤其是在神经病学和肿瘤学用于癌症检测和治疗监测中。在不同的使用成像中的显着开发是二量张量成像(DTI),它允许在3D中映射脑白质连接。该技术在开放精神病学的新研究途径的同时,对脑部疾病,神经发生和衰老提供了更深入的了解。概括,扩散框架还将大脑功能和相对论理论的概念联系起来,提出意识是从大脑的4D连接组中作为5D全息构造而产生的,将神经活动与相对论的时空框架融合在一起。这些关键概念即将使用新开发的11.7T MRI扫描仪探索,从而实现了人脑的介绍成像。该扫描仪已成功捕获了大脑的体内图像前所未有的,没有观察到不良影响。这一突破为神经科学社区提供了一种强大的工具,可以以新的规模研究神经退行性和精神疾病。通过促进我们对大脑结构和功能的理解,该项目表明了超高领域MRI解决脑部疾病复杂性的潜力,从而进一步促进了科学知识和医学实践。
1 Alexey Dosovitskiy、Lucas Beyer、Alexander Kolesnikov、Dirk Weissenborn、Xiaohua Zhai、Thomas Unterthiner、Mostafa Dehghani、Matthias Minderer、Georg Heigold、Sylvain Gelly、Jakob Uszkoreit、Neil Houlsby “一张图片胜过 16X16 个单词:用于大规模图像识别的 Transformers” arXiv:2010.11929v2 [cs.CV] 2021 年 6 月 3 日