在过去的几年中,其他2阶段的3阶段试验具有评估的theedtheadthedithefanti – Programmedcelmdeathprotein1(pd-1),用于特有NPC的一线化学疗法。Captain-1st试验4显示了在CAMRelizumab组中接受治疗的患者的自发性促进性 - 植物(9.7 vs 6.9个月;危险比[HR],0.54 [95%CI,0.39-0.76]; p <.001)。与化学疗法相比,在理性309试验中,5 tiSlizumab与化学疗法结合使用,与化学疗法相比,无统计的无进展生存率提高(9.2vs7.4个月; HR,0.52; 0.52 [95%CI,0.38-0.73]; p <.001); p <.001)。反应和毒性特征在试验之间表现出一致性。到目前为止,只有木星-02报告了有利于免疫治疗组合组的成熟总生存数据。值得注意的是,它的设计是唯一一个作为次要终点的总生存期的设计,对I型错误进行了正式测试和控制。
摘要。Yudhana A,Kartikasari AM,Edila R,Praja RN,Hamonangan JM,Wardhana AH,Mufasirin,Koesdarto S.2024。印度尼西亚的Javan Sptitting Cobra(Naja putatrix)蛇的人畜共患病(Cestoto:Diphyllobothriidae)的分子检测。生物多样性25:4853-4859。sparganosis是一种由螺旋体tape虫的幼虫引起的被忽视的疾病,被认为是对全球公共卫生的严重威胁。然而,关于蛇的患病率或分子研究蛇的数据仍然需要改善。在这项研究中,我们旨在研究使用形态学和分子鉴定方法,研究野生捕获的Javan Spitting Cobra(Naja Sputatrix)蛇在野生型Javan Spitting Cobra(Naja Sputatrix)蛇中的普遍性。从印度尼西亚班纽旺吉的当地卖家购买了总共70种爪哇眼镜蛇蛇。形态鉴定是在从各个偏见位点收集的plerocercoid上进行的。此外,通过聚合酶链完成了分子鉴定聚合酶链反应(PCR)方法,并使用线粒体细胞色素C氧化酶亚基1(COX1)基因进行分析。plerocercoids,患病率为60%。在肌肉组织中,总共收集了231个Plerocercoid,并分为184(79.65%),皮下组织47(20.34%)。将plerococoids宏观鉴定为薄,扁平和白色的带有带状的结构,长2-14厘米,宽2-8毫米。使用胭脂红染色方法对plerocercoids进行了微观检查,发现前侧是口腔样形状的形状。此外,PCR分析结果表明,将5个Plerocercoid样品鉴定为螺旋线,每个样品在467 bp处显示出正带。据我们所知,这项研究是印尼特有蛇类种类主要在Java岛上的螺旋线的第一份报告。 这些发现构成了印度尼西亚人类抓脾传播的严重潜在风险,因为野生捕获的爪哇眼镜蛇蛇本地用作人类食品。据我们所知,这项研究是印尼特有蛇类种类主要在Java岛上的螺旋线的第一份报告。这些发现构成了印度尼西亚人类抓脾传播的严重潜在风险,因为野生捕获的爪哇眼镜蛇蛇本地用作人类食品。
“擦除量子比特”中的主要噪声是擦除 — 一种可以检测到其发生和位置的错误。擦除量子比特有可能减少与容错相关的开销。迄今为止,对擦除量子比特的研究主要集中在量子计算和量子网络应用上。在这里,我们考虑擦除量子比特在量子传感和计量方面的适用性。我们从理论上表明,对于相同级别的噪声,与非擦除量子比特相比,擦除量子比特可以充当更精确的传感器或时钟。我们通过人工将擦除误差(以原子损失的形式)或失相误差注入差分光学晶格时钟比较来实验证明这一点,并观察到在相同注入误差率的情况下,擦除误差的精度有所提高。在具有重复测量周期的时钟中,擦除可以将稳定性提高 2 倍。擦除量子比特对传感的类似好处可以在其他量子平台(如里德堡原子和超导量子比特)中实现。
摘要:本研究通过强调利益相关者的看法和由此产生的专业判断的相关性,为财务安全文献做出了贡献。在进行全面的财务安全研究时,仅使用经济指标来评估公司的财务安全(如现有文献中所建议的)是不准确的。具体而言,基于财务或管理报告在任何特定时间点计算的指数和指标仅提供肤浅的理解,甚至可能扭曲整体情况。还有人认为,专家评估是最客观的方法,尽管它具有与个人认知限制相关的缺点。这些限制并非人工智能所特有,它可以以较少偏见的方式评估企业的财务安全。然而,仅通过模仿人类的行为,它无法直观地感知和评估公司发展的动态,也无法整体评估财务状况——尽管具有学习和预测的可能性——因为人工智能无法思考和预测,而这在企业中是管理者最重要的技能。因此,开发人工智能来评估公司财务安全的风险在于对企业活动(尤其是财务安全)的评估存在偏差。
人们对量子计算的兴趣日益浓厚,随之而来的是软件平台对开发量子程序的重要性。确保此类平台的正确性非常重要,这需要彻底了解它们通常存在的错误。为了满足这一需求,本文首次深入研究了量子计算平台中的错误。我们从 18 个开源量子计算平台收集并检查了 223 个真实错误。我们的研究表明,这些错误中有相当一部分(39.9%)是量子特有的,需要专门的方法来预防和发现它们。这些错误分布在各个组件中,但量子特有的错误尤其经常出现在表示、编译和优化量子编程抽象的组件中。许多量子特有的错误表现为意外输出,而不是更明显的不当行为迹象,例如崩溃。最后,我们提出了一个反复出现的错误模式层次结构,其中包括十种新颖的量子特有模式。我们的研究结果不仅表明了量子计算平台中错误的重要性和普遍性,而且还可以帮助开发人员避免常见错误,并帮助工具构建者应对预防、发现和修复这些错误的挑战。
环境方面 • 由于实施了超出规定(超出合规)的各种环境管理和社区赋权计划,连续第五次获得环境事务部颁发的国家 2021 年金牌 PROPER 奖。 • 尿素产品的能源强度为 25.36 MMBT/吨,比股东目标 25.88 MMBTU/吨更有效。与尿素互补的是,氨的能源强度为 34.02 MMBTU/吨,比股东目标 34.35 MMBTU/吨更有效。 • Pupuk Kaltim 范围 1、2 和 3 的温室气体排放总强度为 1.3 吨 CO2eq/吨尿素产品。 • 2021 年温室气体减排量为 724,018.83 吨二氧化碳当量,占 1、2 和 3 总排放范围的 16%。 • 优化再生水,其用量可达锅炉供水总用水量的 68.07%。 • 与水泥生产商合作,100% 利用有毒有害 (B3) 废物(粉煤灰),并用于制造 38,8000 块砖。 • 实现珊瑚礁修复计划,并成功在保护区内添加 IUCN 红色名录中的特有动植物。
近年来,官僚腐败的有害影响引起了发展经济学家以及国际金融机构和政策制定者的关注。腐败以前仅谨慎地被忽略并提及,它是一个中心舞台。尽管如此,腐败不是一种新现象。它和政府本身一样古老。当前关于腐败高光的文献对增长有害影响(参见Klitgaard 1988,Shleifer和Vishny 1993,Mauro 1995,Cheung 1996和Bardhan 1997)。,直到最近,增长文献还没有充分解释为什么某些国家的腐败较低,而另一些国家的特有。1相关的分析问题不是评估腐败的有害性,而是为什么不同的政治制度促进了不同水平的腐败。,只要没有清楚地确定腐败的原因,我们就无法从腐败的文献中辨别出任何有用的预后。此外,内生性问题包围了有关矫正对经济增长影响的实证研究。这些经验研究中很少有人考虑到生态增长或缺乏它可以增加或降低腐败水平的可能性。本文试图通过确定腐败的决定因素并检查这些因素(例如教育,政治制度,国家类型,种族,司法
生物物理模型为自然和农业设定中的气候物质关系提供了宝贵的见解。然而,模型之间存在实质性的结构差异,这些差异需要特定地点的重新校准,在类似的气候场景下产生了十个不一致的预测。机器学习方法提供了数据驱动的解决方案,但通常缺乏可解释性和与知识的一致性。我们提出了一个描述果树休眠状态的物候模型,将常规生物物理模型与神经网络相结合,以解决其结构分离。我们在一项广泛的案例研究中评估了我们的混合模型,该案例研究预测了日本,韩国和瑞士的樱桃树木学。我们的方法始终优于传统的生物物理和机器学习模型,以预示多年来的开花日期。此外,神经网络的适应性促进了特有树种品种的参数学习,从而可以对没有特定地点重新校准的新站点进行稳健的概括。这种混合模型杠杆既可以生物物理约束和数据驱动的灵活性,从而为准确且可解释的物候建模提供了有希望的途径。
环境方面 • 由于实施了超出规定(超出合规性)的各种环境管理和社区赋权计划,连续第五次获得环境事务部颁发的国家 2021 年金牌 PROPER 奖。• 尿素产品的能源强度为 25.36 MMBT/吨,比股东设定的 25.88 MMBTU/吨的目标更有效率。与尿素互补的是,氨的能源强度为 34.02 MMBTU/吨,比股东设定的 34.35 MMBTU/吨的目标更有效率。• Pupuk Kaltim 温室气体排放范围 1、2 和 3 的总强度为 1.3 吨 CO2eq/吨尿素产品。• 2021 年温室气体减排量为 724,018.83 吨二氧化碳当量,占 1、2 和 3 总排放范围的 16%。• 优化再生水,其用量可达锅炉供水总用水量的 68.07%。• 与水泥生产商合作,100% 利用有毒有害 (B3) 废物(粉煤灰),并用于制造 38,8000 块砖。• 实现珊瑚礁修复计划,并成功在保护区内添加 IUCN 红色名录中的特有动植物。
大自然正在以前所未有的速度衰退,而且速度还在不断加快。由于人类活动,近一百万个物种面临灭绝的危险。生物多样性和生态系统服务政府间小组(IPBES)的 2019 年全球评估报告是迄今为止最全面的研究,它紧急引起了人们对地球危急状况的关注。1 亚太地区拥有地球上其他任何地方都找不到的丰富特有生物多样性,其生态系统多样化,包括从东南亚的热带森林到太平洋的珊瑚礁。然而,该地区也是生物多样性和自然丧失的中心。亚太地区是世界上自然资本枯竭热点最集中的地区 2 ,并且在过去几年中一直是全球受威胁物种数量最多的地区。3 仅在东南亚,预计到 2100 年将有 13% 至 42% 的物种灭绝,其中约一半将导致全球灭绝。 4 地球系统科学家警告称,太平洋的珊瑚礁正迅速接近不可逆转的临界点,这可能会引发生物群落的快速变化,对海洋生物多样性和蓝碳封存产生深远影响。5 链接