孟买 积分变换和特殊函数 计算流体力学 分形几何,离散数学 数学建模 运筹学 希尔普尔 偏微分方程 计算流体力学 印多尔 数据分析 微分方程 不动点定理 昌迪加尔 微分方程计算方法 10 技术管理
课程名称 LTP 学分 类别代码 1 MA234 复变量和特殊函数 3 0 0 3 BSC 2 EE234 控制系统工程 3 0 0 3 ESC 3 EV201 数字系统设计 3 0 0 3 PCC 4 EC202 信号与系统 3 0 2 4 PCC 5 EV203 脉冲和开关电路 3 0 0 3 PCC 6 EC204 人工智能与机器学习简介 3 0 0 3 ESC 7 EV205 数字系统设计实验室 0 1 2 2 PCC 8 EC206 设计思维实验室 0 1 2 2 ESC 9 IC2XX 必修非学分课程* 1 0 0 0 MNC
课程大纲 逻辑:命题、否定、析取和合取、蕴涵和等价、真值表、谓词、量词、推理规则、证明方法。集合论:集合论中的定义和简单证明、集合的归纳定义和归纳证明、包含和排除原理、关系、关系的图形表示、关系的性质、等价关系和划分、偏序、线性和有序集。函数:映射、单射和全射、函数组合、反函数、特殊函数、递归函数理论、Z 变换。初等组合学:计数技术、鸽巢原理、递归关系、生成函数。图论:图论元素、欧拉图、汉密尔顿路径、树、树遍历、生成树。
大量研究了各类特殊函数(如勒让德多项式)的性质。此外,这个无穷级数似乎不能用简单函数表示,只能用数值计算。总之,在这项工作中,我们研究了由表面电荷密度均匀的“北”半球面产生的静电势的性质。这个问题引起了广大静电学或电动力学领域研究人员和教育工作者的兴趣 20 。我们利用一种数学方法,充分利用了物体的轴对称性,推导出适用于某些特殊情况的静电势的精确紧致解析表达式。我们还推测了空间中任意一点的通解的性质,暗示它可以计算为无穷级数,但不是紧致的解析形式。作为该方法的简单副产品,我们以公式 (12) 中的表达式形式获得了一个有趣的数学积分公式。
• 警告:我对这个主题知之甚少。我所知道的大部分内容来自 2022 年 6 月 H. B¨olskei 教授在巴黎拉格朗日中心的一门讲座课程。 • “深度学习”基于函数分析中的一个简单想法:用“组合近似”取代经典的“叠加近似” • “叠加近似”的含义:通过给定特殊函数族元素的线性组合来近似函数(在给定的函数空间中)(例如:某些希尔伯特基,如傅里叶特征族)。 • “组合近似”的含义:通过属于简单特殊类的函数的(有限但任意长的)复合函数来近似函数(在 fd 线性空间的某个紧子空间上)。 • 实践中发现的事实:组合近似被证明更有效!
PH401:数学物理 I (2-1-0-6) 线性代数:线性向量空间:对偶空间和向量、柯西-施瓦茨不等式、实数和复数向量空间的定义、度量空间、线性算子、子空间;跨度和线性独立性:行减少和方法;基础和维度:使用简化的跨度和独立性测试 (RREF) 方法;线性变换:图像、核、秩、基础变换、转移矩阵、同构、相似变换、正交性、Gram-Schmidt 程序、特征值和特征向量、希尔伯特空间]。张量:内积和外积、收缩、对称和反对称张量、度量张量、协变和逆变导数。常微分方程和偏微分方程:幂级数解、Frobenius 方法、Sturm-Liouville 理论和边界值问题、格林函数;笛卡尔和曲线坐标系中不同波动方程的分离变量法,涉及勒让德、埃尔米特、拉盖尔和贝塞尔函数等特殊函数以及涉及格林函数的方法及其应用。教材:
a) MAL-411:解析数论 b) MAL-412:组合理论 c) MAL-413:信用风险建模 d) MAL-414:微分几何 e) MAL-415:算法设计与分析 f) MAL-416:图论 g) MAL-41?:数学图像处理 h) MAL-418:数学建模与仿真 i) MAL-419:数论 j) MAL-420:统计机器学习。k) MAL-511:抽象谐波分析 I) MAL-512:高级复分析 m) MAL-513:高级矩阵理论 n) MAL-514:高级数值分析 0) MAL-515:高级运筹学 p) MAL-5 16:高级偏微分方程 q) MAL-51?:代数数论 r) MAL-518:代数拓扑 s) MAL-519:近似理论 t) MAL-520:编码理论 u) MAL-521:交换代数 v) MAL-522:计算流体动力学 w) MAL-523:控制理论 x) MAL-524:动力系统 y) MAL-525:流体动力学 z) MAL-526:傅里叶分析及应用 aa) MAL-52?:模糊集和模糊系统 bb) MAL-528:双曲守恒定律 cc) MAL-529:积分方程和变分法 dd) MAL-531:数学生物学 ee) MAL-532:数学密码学 ff) MAL-533:测度论 gg) MAL-534:多元技术 hh) MAL-535:数值线性代数 ii) MAL-536:算子理论 jj) MAL-53?:最优控制理论 kk) MAL-538:正交多项式和特殊函数 II) MAL-539:投资组合优化 mm) MAL-540:逆问题的正则化理论 nn) MAL-541:有限群的表示理论 00) MAL-542:半群理论与应用