二次谐波生成:半导体电介质接口的强大非破坏性表征技术 Irina Ionica a 、Dimitrios Damianos a 、Anne Kaminski-Cachopo a 、Danièle Blanc-Pélissier b 、Gerard Ghibaudo a 、Sorin Cristoloveanu a 、Lionel Bastard a 、Aude Bouchard a 、Xavier Mescot a、Martine Gri a、Ming Lei c、Brian Larzelere c 和 Guy Vitrant aa Univ。格勒诺布尔阿尔卑斯,CNRS,格勒诺布尔-INP,IMEP-LAHC,38000 格勒诺布尔,法国 b INL-UMR 5270,里昂国立应用科学学院,7 avenue Jean Capelle,69621 维勒班,法国 c FemtoMetrix,1850 East Saint Andrew Place,加利福尼亚州圣安娜 92705,美国。二次谐波产生 (SHG) 被证明是一种非常有前途的介电体-半导体界面表征技术,因为它灵敏、无损,可在晶圆处理的不同阶段直接应用于晶圆。该方法基于非线性光学效应,测量包含介电体-半导体界面处“静态”电场的信号,该信号与氧化物电荷 Q ox 和界面态密度 D it 直接相关。从 SHG 测量中提取 Q ox 和 D it 的一般方法需要 (i) 根据通过经典电学方法获得的参数进行校准和 (ii) 建模以捕捉影响 SHG 信号的光传播现象。在本文中,我们基于对如何利用 SHG 进行半导体电介质表征的最新进展的回顾来讨论这些问题。简介半导体上电介质堆栈在微纳电子、光伏 (1)、图像传感器 (2)、生物化学传感器等许多应用领域的设备中无处不在。在每种情况下,界面的电质量对设备的性能都有很大的影响。通常使用两个参数来确定这种界面的电质量:固定氧化物电荷密度 Q ox 和界面态密度 D it 。大多数时候,这些参数是通过电测量(例如电流、电容、噪声 (3))获取的,然后采用适当的提取方法并在专门制造的测试设备上实施(例如:金属氧化物半导体 - MOS 电容或晶体管)。一些其他方法可以直接在晶圆级实施,而无需任何额外的测试设备制造步骤,例如:半导体的电晕-开尔文特性 (4)、通过光电导或光致发光衰减测量进行的载流子寿命提取 (5)。除了无需任何额外步骤即可直接在晶圆上进行探测的可能性之外,选择最适合的测量方法的标准还包括灵敏度、非破坏性、区分 D it 和 Q ox 的能力、提供高空间分辨率的能力。可以满足所有这些标准的最新技术是二次谐波产生 (SHG) (6),基于非线性光学效应。
我们是否能够充分利用这一潜力将取决于我们使用机器学习的方式:训练数据必须经过精心设计,方法需要使用适当的架构,并且必须严格评估输出,这甚至可能需要解释人工智能决策。在本次演讲中,我们将概述机器学习在结构生物学中的当前应用,包括我们自己工作中的示例、实验人员如何使用折叠预测方法以及人工智能未来如何改变晶体学。[1] Thorn, A.* (2022). Curr. Opin. Struct. Biol. 74 , https://doi.org/10.1016/j.sbi.2022.102368。
1. 引言 随着消费者、监管机构和资本市场的压力越来越大,企业被迫披露更多有关其产品和供应链 (SC) 的信息 (Menon 和 Jain,2024 年;Wang 等,2024 年;Zheng 等,2024 年)。此外,研究社会和环境绩效对企业长期发展的影响已成为一个热门话题 (Chen 等,2021 年;Gualandris 和 Kalchschmidt,2016 年;Xu 等,2023 年)。供应链透明度 (SCT) 是可持续实践的一个重要方面,越来越受到学术界的关注 (Carter and Rogers,2008 年;Morgan 等,2023 年)。此外,许多公司已经开始了 SCT 实践。例如,全球领先的运动鞋和服装制造商耐克 (Nike) 启动了一个名为“制造地图”的项目,让消费者可以查看耐克产品的制造地点以及有关劳工标准和环境影响的信息 (Nike, 2024)。著名的西班牙时尚品牌 Mango 已将其三线制造商名单公布在网上,让消费者可以透明地了解品牌在可持续发展方面所做的努力 (Mango, 2022)。提高可持续发展对企业至关重要。具体而言,可持续发展可以向利益相关者传递积极信号,促进融资行为 (Shi et al., 2024)、深化伙伴关系 (Baharmand et al., 2021; Besiou and Van Wassenhove, 2020) 并提高整体绩效 (Jia et al., 2023)。此外,可持续发展还能增强组织识别和管理风险的能力 (Dubey et al., 2019)。例如,通过提高供应链内上游业务的可见性,企业可以更清楚地了解整个供应链的运作情况(Sadeghi 等人,2023 年)。这反过来又使他们能够制定主动战略,旨在降低中断的可能性并减轻此类中断对业务运营的不利影响(Tang,2006 年)。此外,供应链透明度有助于推进可持续的企业实践(Dahlmann 等人,2023 年;Kalkanci 和 Plambeck,2020 年)并减轻信息不对称(Lamming 等人,2001 年;Sadeghi 等人,2022 年)。透明度通常被认为是一种宝贵的特质;然而,在供应链和上游业务中,保持机密性同样重要。 Bai 和 Sarkis (2020) 认为,实施 SCT 要求企业披露其复杂、多层次的供应链信息,包括原材料采购、生产流程、供应链运营、合作伙伴关系和环境保护措施。因此,推行 SCT 可能会导致负面后果,例如竞争加剧、声誉受损以及法律和监管风险(刘等人,2024 年;Sodhi 和 Tang,2019 年)。本社论旨在总结当前 SCT 研究中的关键主题。然后,我们将这些关键主题综合成一个结构化框架,这将为后续研究提供有意义的参考。最后,我们对未来的研究空白和方向提出了一些独到的见解。
NTT 300 GHz 频段 InP HBT 功率放大器和 InP-CMOS 混合相控阵发射器 Alyosha C. Molnar 康奈尔大学 超越 CMOS 的 N 路径混频器 Pascal Chevalier ST Microelectronics 用于有线、无线和卫星通信应用的 55 纳米柔性 SiGe BiCMOS 技术 Takuya Maeda 东京大学 ScAlN/GaN 电子设备应用特性 Trevor Thornton 亚利桑那州立大学 高功率器件的金刚石-BN 异质结:终极 HEMT ? Jim Sowers Maxar Space Infrastructure 商业通信卫星有效载荷中的 III-V 族半导体 Kenle Chen 中佛罗里达大学 用于下一代无线通信的负载调制平衡放大器 Bernhard Grote NXP 基站 GaN HEMT 和 GaN PA 技术进展 Lan Wei 滑铁卢大学 基于物理的单片 GaN 集成模型系列 Larry Dunleavy Modelithics Inc.,南佛罗里达大学
Alyosha C. Molnar 康奈尔大学 超越 CMOS 的 N 路径混频器 Pascal Chevalier ST Microelectronics 用于有线、无线和卫星通信应用的 55 纳米灵活 SiGe BiCMOS 技术