本报告使用了来自公共,专有和USDA计划管理数据的各种来源的数据,这些数据尚未公开。公开可用的数据来源包括美国农业部,国家农业统计服务;加利福尼亚食品和农业部;有机农业研究所;国际有机农业运动联合会 - 国际有机物; USDA,有机种植者使用农作物保险的风险管理机构数据;美国农业部,外国农业服务全球农业贸易体系; USDA,农业营销服务的全球诚信数据库以及USDA的常规和有机价格数据,USDA,农业营销服务的市场新闻。本报告中使用的专有市场数据源来自Argus和有机贸易协会。本报告中使用的USDA机构的计划管理数据包括来自农业营销服务和自然资源保护服务的有机过渡计划统计。
本报告使用了来自公共,专有和USDA计划管理数据的各种来源的数据,这些数据尚未公开。公开可用的数据来源包括美国农业部,国家农业统计服务;加利福尼亚食品和农业部;有机农业研究所;国际有机农业运动联合会 - 国际有机物; USDA,有机种植者使用农作物保险的风险管理机构数据;美国农业部,外国农业服务全球农业贸易体系; USDA,农业营销服务的全球诚信数据库以及USDA的常规和有机价格数据,USDA,农业营销服务的市场新闻。本报告中使用的专有市场数据源来自Argus和有机贸易协会。本报告中使用的USDA机构的计划管理数据包括来自农业营销服务和自然资源保护服务的有机过渡计划统计。
抽象背景/目标:自闭症和自闭症谱系障碍(ASD)是神经发育障碍,具有广泛的行为和症状。这些行为是终生的,通常会导致社会互动,言语和非语言交流以及重复行动的困难。本研究旨在确定自闭症儿童的营养状况和人体测量值,并评估土耳其Gaziantep私立教育中心的父母提供的营养教育的影响。方法:在Hasan Kalyoncu大学特殊教育与研究中心进行了三个月的干预研究,该研究中心为4-9岁(7.2±1.37岁)的十个男性和四个女性自闭症儿童(7.2±1.37岁)进行了一项。营养教育是在开始时以及第一个,第二和第三个月份向家庭提供的。使用问卷来确定儿童的人口特征和饮食习惯。在研究开始和三个月干预结束时,要求参与者在七天的时间内记录他们的食物摄入量。在研究开始时和第一个,第二和第三个月,评估了人体测量和身体组成。计算了体重指数(BMI),腰围围比(WC)和腰围比(WHTR)。在研究结束时,向家庭提供了儿童饮食行为清单(CEBI)和胃肠道严重程度指数(GI)问卷。结果:发现脂肪的能量贡献百分比很高。平均GI得分为5.6。发现能量,纤维,维生素D,B 1,叶酸,铁和钙的摄入量低于建议的每日津贴。高度(P = 0.001),体重(P = 0.021),臀部(P = 0.001),颈部(P = 0.001)和头圆周(P = 0.004),体内脂肪质量(P = 0.001)和体内脂肪百分比(P = 0.001)之间的平均变化在统计上是统计学意义的,在7个月内没有统计学意义。总体而言,有53.1%的儿童至少患有一种胃肠道(GI)症状。最常见的症状是腹泻(64.3%),肠胃胀气(57.1%),腹痛(50.0%)和便秘(35.7%)。结论:大量研究表明,营养教育可以导致自闭症谱系障碍儿童(ASD)带来明显的积极结果。为了最大程度地利用这些好处,必须将营养师纳入支持团队,因为他们可以极大地增强家庭对自闭症儿童营养需求的理解。在此和类似的研究中,很难控制和调节自闭症儿童的营养,因为尽管做了很多努力,但由于发脾气和行为问题,父母通常无法控制孩子的营养。当务之急是医生和父母与营养学家和营养师一起帮助这些孩子保持健康并通过健康饮食来改善生活质量。关键字:自闭症谱系障碍,自闭症,营养教育,营养状况,人体测量学
在海平面上改变一到两米会影响水文,生物,物理和化学状态。表面温度变化的平均年度过程,等温线线移动。主要变化发生在富含Zoobenthos的架子上。随着深度在浅区域的变化,表面波,电流,湍流和蒸发的特征也会发生变化。根据过去15年的分析结果,里海的水平降低了一米。近年来,里海的水平每年降低10厘米,由于气候变化,海面的蒸发量增加了。随着水平的降低,架子区域的体积减小。生活在货架区域的生物区域正在收缩。这对盆地的生物系统产生负面影响。里海海的水平变化改变了其体积,水表面积,海岸线配置,测深和一般所有形态学参数。里海地区的特征是许多结构和区域特征。里海沿海地区娱乐区的发展主要取决于水平制度。在150年的工具观测中,波动范围为3.8 m(从1837年的25.2 m到1977年的29 m)。在1929 - 1941年期间,水平降低了1.9 m,在1978-1996期间降低了2.5 m,这些波动导致海岸的发展发生了显着变化。由于1929 - 1941年的海平面下降,形成了沙滩。在阿塞拜疆,始于1978年的大约600公里的水平上升,造成了沿海侵蚀,洪水和沉降。
Adamson, PT、Rutherfurd, ID、Peel, MC、Conlan, IA,2009 年。湄公河的水文学。引自:Cambell, I.(编辑),湄公河:国际河流流域的生物物理环境,第一版。Elsevier,第 53 – 76 页。Alcayaga, H.、Belleudy, P.、Jourdain, C.,2012 年。流域尺度上水电结构对河流扰动的形态学建模。引自:Mu ˜ noz, RM(编辑),河流流量 2012。河流水力学国际会议,第 537 – 544 页。 Arias, ME、Cochrane, TA、Kummu, M.、Lauri, H.、Holtgrieve, GW、Koponen, J.、Piman, T.,2014。水电和气候变化对东南亚最重要湿地生态生产力驱动因素的影响。生态模型 272,252 – 263。Ashouri, H.、Hsu, K.、Sorooshian, S.、Braithwaite, DK、Knapp, KR、Cecil, LD、Nelson, BR、Prat, OP,2015。PERSIANN-CDR:来自多卫星观测的每日降水气候数据记录,用于水文和气候研究。美国流星学会通报 96(1),69 – 83。 Ayugi, B., Tan, G., Gnitou, GT, Ojara, M., Ongoma, V., 2020. 罗斯贝中心区域气候模型对东非降水的历史评估和模拟。大气研究 232, 104705 。Bao, Z., Zhang, J., Wang, G., Fu, G., He, R., Yan, X., Jin, J., Liu, Y., Zhang, A., 2012. 中国北方海河流域径流量减少的归因:气候变化还是人类活动?水文地质学杂志 460 – 461, 117 – 129 。Bartkes, M., Brunner, G., Fleming, M., Faber, B., Slaughter, J., 2016. HEC-SSP 统计软件包用户手册 2.1 版。美国陆军工程兵团。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2018a。澜沧江梯级大坝对越南湄公河三角洲流态的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (4), 487 – 492。Binh, DV、Kantoush, S.、Mai, NP、Sumi, T.,2018b。越南湄公河三角洲在增加管制流量和河流退化的情况下的水位变化。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 871 – 876。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2019。湄公河流域的长期排放、水位、盐度浓度和降水。 Mendeley Data V3 。Binh, DV、Kantoush, S.、Sumi, T.,2020. 上游水坝导致越南湄公河三角洲长期排放和沉积物负荷的变化。地貌学 353,107011。Cook, BI、Bell, AR、Anchukaitis, KJ、Buckley, BM,2012。积雪和降水对湄公河下游流域旱季径流的影响。地球物理研究杂志 117,D16116。Dang, TD、Cochrane, TA、Arias, ME、Van, PDT、Vries, TTD,2016。湄公河洪泛区水利基础设施建设带来的水文变化。水文过程 30,3824 – 3838。 Darby, SE、Hackney, CR、Leyland, J.、Kummu, M.、Lauri, H.、Parsons, DR、Best, JL、Nicholas, AP、Aalto, R.,2016 年。热带气旋活动变化导致巨型三角洲河流沉积物供应减少。《自然》276 – 279。Eslami, S.,Hoekstra, P., Trung, NN, Kantoush, SA, Binh, DV, Dung, DD, Quang, TT, Vegt, MVD,2019。人为沉积物匮乏导致湄公河三角洲的潮汐放大和盐入侵。Sci. Rep. 9,18746。Fan, H., He, D., Wang, H.,2015。筑坝澜沧江-湄公河主流的环境后果:综述。Earth-Sci. Rev. 146,77 – 91。Ha, TP, Dieperink, C., Tri, VPD, Otter, HS, Hoekstra, P.,2018a。越南湄公河三角洲适应性淡水管理的治理条件。J. Hydrol. 557,116 – 127。 Ha, DT、Ouillon, S.、Vinh, GV,2018b。根据高频测量(2009 – 2016 年)得出的湄公河下游水和悬浮沉积物预算。水 10, 846 。Harris, I.、Osborn, TJ、Jones, P.、Lister, D.,2020。CRU TS 月度高分辨率网格化多元气候数据集第 4 版。科学数据。https://doi.org/10.1038/s41597-020-0453-3)。Hecht, JS、Lacombe, G.、Arias, ME、Dang, TD,2019。湄公河流域的水电大坝:其水文影响回顾。水文杂志 568, 285 – 300 。 Hoang, L.、Ngoc, TA、Maskey, S.,2016。一种用于估算越南湄公河三角洲 CERES-rice 模型参数的稳健参数方法。大田作物研究。196,98 – 111。Hoanh, CT、Jirayoot, K.、Lacomne, G.、Srunetr, V.,2010。气候变化和发展对湄公河流量制度的影响:首次评估 – 2009 年。MRC 技术论文第 29 号。湄公河委员会,老挝万象。Jordan, C.、Tiede, J.、Lojek, O.、Visscher, J.、Apel, H.、Nguyen, HQ、Quang, CNX、Schlurmann, T.,2019。重新审视湄公河三角洲的采砂 – 目前当地沉积物短缺的规模。 Rep. 9,17823 。 Kantoush, S.、Binh, DV、Sumi, T.、Trung, LV,2017。上游水电站大坝和气候变化对越南湄公河三角洲水动力学的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 73 (4),109 – 114 。Kendall, AMG,1938。一种新的秩相关性测量方法。Oxford J. 30,81 – 93 。Kiem, AS、Ishidaira, H.、Hapuarachchi, DP、Zhou, MC、Hirabayahi, Y.、Takeuchi, K.,2008。使用高分辨率日本气象局 (JMA) AGCM 模拟湄公河流域未来水文气候学。水文过程。22,1382 – 1394 。 Kingston, DG、Thompson, JR、Kite, G.,2010。湄公河流域气候变化预测排放量的不确定性。水文地球系统科学讨论。7,5991 – 6024。Kondolf, GM、Rubin, ZK、Minear, JT,2014。湄公河上的水坝:累积沉积物匮乏。水资源研究。50,5158 – 5169。 Kondolf, GM, Schmitt, RJP, Carling, P., Darby, S., Arias, M., Bizzi, S., Castelletti, A., Cochrane, TA, Gibson, S., Kummu, M., Oeurng, C., Rubin, Z., Wild, T., 2018. 湄公河沉积物预算的变化:大型河流流域的累积威胁和管理策略。环境科学总论 625, 114 – 134 。Kummu, M., Lu, XX, Wang, JJ, Varis, O., 2010.湄公河沿岸新兴水库的全流域泥沙截留效率。地貌学 119,181 – 197 。 Lauri, H.,De Moel, H.,Ward, PJ,R ¨ as ¨ anen, TA,Keskinen, M.,Kummu, M.,2012。湄公河水文未来变化:气候变化和水库运行对流量的影响。水文地球系统科学 16,4603 – 4619 。 Li, D.,Long, D.,Zhao, J.,Lu, H.,Hong, Y.,2017。湄公河流域观测到的流动状态变化。水文杂志 551,217 – 232 。 Lu, XX,Siew, RY,2006。过去几十年来湄公河下游的水流量和泥沙通量变化:中国大坝的可能影响。 Hydrol. Earth Syst. Sci. 10, 181 – 195 。 Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流变化观测结果:中国水坝的影响? Quat. Int. 336, 145 – 157 。 Mai, NP, Kantoush, S., Sumi, T., Thang, TD, Trung, LV, Binh, DV, 2018. 评估和适应水坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378 。 Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。
个人、公司或企业 总金额 个人、公司或企业 总金额 HEINEMANN 1,057.90 NELSON'S TERMITE & PEST CONTROL INC. 1,780.00 COLLEGE BOARD 1,079.94 SCHOLASTIC, INC. 1,789.78 B & B ELECTRIC 1,138.29 GENERATION GENUIS, INC. 1,795.00 THE MUSIC SHOPPE 1,170.49 RT. 48 INSPECTIONS 1,809.00 SVIS 1,184.70 TURNITIN 1,833.33 ILL.雷丁议会 1,212.00 SMOKY JENNINGS CHEVROLET 1,834 ATTAINMENT COMPANY 1222.41 SVHS 1,850.00 MJ KELLNER 1,226.59 STEAM POWER 1,851.00 JOHNSON CONTROLS FIRE PRO 1,256.57 BANNING'S TIRE AND AUTO SERVICE 1,873.56 PARKS SEWER SERVICE INC 1,270.00 霍巴特 1,945.63 DYNAGRAPHICS, INC. 1,277.09 BLICK ART MATERIALS 1,963.10 MEADOWS, ROBERT D. 1,289.48 ESPARK, INC 2,023.50 FOLLETT CONTENT SOLUTIONS, LLC 1,301.21 WARD'S SCIENCE 2,057.30 SENTINEL INSECT CONTROL 1,327.00 SCHORFHEIDE, NATHAN 2,063.11 ILLINOIS PRINCIPAL ASSOC. 1,361.00 ALTORFER, INC 2,065.00 EDGE COMMUNICATIONS 1,371.30 QUADIENT FINANCE USA, INC. 2,084.41 CAROLINA BIO. SUPPLY CO. 1,372.08 JARVIS WELDING LLP 2,150.00 VERIZON WIRELESS 1,434.99 SUPEREVAL 2,195.00 METROPOLITAN LIFE INS. CO 1,440.00 SPIGOT NETWORKS 2,198.75 QUADIENT LEASING USA, INC 1,440.48 MILLER TRACY BRAUN 2,211.25 SOMMER, KRISTINA L 1,497.25 STACEY, CAROL 2,238.52
*纽约州立大学布法罗分校,雅各布医学与生物医学科学学院,急诊医学系,纽约州布法罗 † 威斯康星大学麦迪逊分校,医学与公共卫生学院,BerbeeWalsh 急诊医学系,威斯康星州麦迪逊 ‡ 佐治亚医学院奥古斯塔分校,急诊医学系,佐治亚州奥古斯塔 § 加州大学戴维斯分校医学院,急诊医学系,加利福尼亚州萨克拉门托 ∥ 纽约州立大学布法罗分校,雅各布医学与生物医学科学学院,儿科系,纽约州布法罗 **纽约州立大学布法罗分校,公共卫生与健康职业学院,生物统计学系,纽约州布法罗 †† 纽约州立大学布法罗分校,雅各布医学与生物医学科学学院,外科学系,纽约州布法罗 ‡‡ 纽约州立大学布法罗分校,雅各布医学与生物医学科学学院,纽约州布法罗市骨科学院 一位已故作家
深度科技公司通常需要复杂且昂贵的基础设施,这些要求往往超出了一般业务研发需求。随着这些企业的发展和运营规模,这些要求可能会与监管、规划和成本相关障碍一起加剧。虽然对灵活且经济实惠的实验室和办公空间的需求并非深度科技企业所独有,但这也是基础设施方程式的一个关键部分。随着企业扩大员工人数和业务规模,对空间的需求势在必行,但在该国的某些地区,很难获得空间。这一点在伦敦、剑桥和牛津的“金三角”以及英格兰东南部最为明显,那里对实验室空间的需求远远超过供应,尤其是在生命科学领域。
作者要感谢CPI同事Barbara Buchner,Sasha Abraham,John Michael LaSalle,Alastair Mayes,Francisco Macedo,Baysa Naran,Morgan Richmond和Costanza Strinati的贡献。我们还感谢OECD和CDP为报告提供信息框和分析。本报告是在顾问委员会的指导下编写的,我们特别感谢成员的建议和外部审查(按组织按字母顺序列出):Jorge Gastelumendi(大西洋委员会); AndreaFernández(C40);凯蒂·沃尔什(CDP); EszterMogyorósy1和Maryke van Staden(ICELEI); Brian Motherway(IEA); Carolin Koenig和Marie-Sophie Schwarz 1(Giz); Isabelle Chatry(OECD); Sharon Gil和Gulnara Roll(UNEP); Padraig Oliver(UNFCCC); Bella Tonkonogy(美国财政部);和乔安娜·麦克莱恩(Joanna McLean Masic)(世界银行集团)。我们感谢以下贡献者(按组织按字母顺序排列):Emilie Becault和Idan Sassan(CDP);夏洛特·拉菲特(OECD); Catarina Fonseca和Elspeth Alexander(脉动潮);伊恩·斯金纳(Ian Skinner)和玛丽安·皮尔森(Marianne Pearson)(TEPR)。此外,我们感谢以下外部审阅者(按组织按字母顺序排列):Eleni Dallas,Sebastian Herold和Ruben Werchan(BMZ); Rudolf du Plessis,Paula Rolffs和Ilgin Warneke(Giz); AndréAlmeidada Vila(ICELEI); Sandrine Boukerche,Chandan Deuskar,Juan Sebastian Leiva Molano和Augustin Maria(世界银行集团)。我们还要感谢CPI同事Angel Jacob,Kirsty Taylor和Rob Kahn的编辑,以及Pauline Baudry,Elana Fortin,Angela Woodall和Denny Kosasih的图形和设计。