© 作者 (2021)。由牛津大学出版社代表《大脑担保人》出版。这是一篇开放获取文章,根据知识共享署名许可条款分发 (http://creativecommons.org/licenses/by/4.0/),允许在任何媒体中不受限制地重复使用、分发和复制,前提是正确引用原始作品。
该文件计划于 2025 年 1 月 29 日在《联邦公报》上公布,并可在 https://federalregister.gov/d/2025-02003 和 https://govinfo.gov 上查阅。
正在进行的能源过渡到遏制二氧化碳排放并满足不断增长的能源需求,这增强了将可再生能源整合到现有电力系统中的需求。太阳能一直在增加市场份额。多开关太阳能电池(MJSC)可以使阳光向能量的有效转化,而不会像商业化的单连接硅太阳能电池一样受到33%的限制。iii-V半导体已有效地用于空间应用和浓缩光伏(CPV)。本综述讨论了细胞级别的MJSC的工作和组成部分,以及用于空间应用和CPV的模块级别。制造程序,MJSC的材料获取,然后在引入目前的挑战,以防止MJSC实现广泛的商业化以及将来可以解决这些挑战的研究方向。
什么是儿童健康检查?儿童健康检查有助于我们确保您的孩子健康成长。即使感觉良好,您的孩子也应定期参加这些检查,这一点很重要。儿童健康检查有助于我们了解您的孩子并尽早发现问题(例如生长、发育或其他医疗保健问题)。即使您的孩子因其他疾病而定期就诊,这些检查对于跟踪他们的成长和发育也很重要。如果可能,主要照顾者最好能参加这些检查。这些检查让您和您的提供者有机会相互了解、提出问题并获得答案。您的提供者将讨论一些重要主题。这些包括:
摘要:理论基础:静息状态范式经常应用于脑电图 (EEG) 研究;然而,它与无法控制参与者的思想有关。为了量化受试者在休息时的主观体验,引入了阿姆斯特丹静息状态问卷 (ARSQ),涵盖了十个思维游离维度。我们旨在估计主观体验与 EEG 的静息状态微状态之间的关联。方法:使用 197 名受试者的 5 分钟静息状态 EEG 数据来评估七个微状态类别的时间特性。采用贝叶斯相关方法来评估静息后评估的 ARSQ 域与微状态参数之间的关联。结果:揭示了舒适度、自我和躯体意识域与神经电微状态的时间特性之间的几种关联。舒适度与微状态 E 持续时间之间的正相关性显示出最强的证据 (BF 10 > 10);其余相关性显示出大量证据 (10 > BF 10 > 3)。结论:我们的研究表明,评估静息状态下发生的自发思维对于理解微状态所反映的内在大脑活动具有重要意义。
乳腺癌是女性死亡的主要原因。在治疗这种疾病方面已取得了巨大进步,芳香酶抑制剂(AIS)已被认为是基石。它们的特征是高效率和低毒性。作者回顾了可用文献和定义的状态AI管理。这项研究旨在帮助临床医生在日常临床实践中同样权衡患者的需求和疾病控制率的需求。今天,AIS在治疗激素受体阳性乳腺癌中起着核心作用。 在这项研究中,专家小组回顾了有关AIS使用的文献,讨论了它们在乳腺癌的各个方面的使用,从乳腺癌前和绝经后早期乳腺癌到转移性乳腺癌,以及其有关效率和毒性的管理。 鉴于在改善日常临床实践中的生存方面取得的出色结果,临床医生需要解决他们对治疗持续时间的担忧以及对骨骼健康,心血管系统和代谢的不利影响。 目前,除了癌症治疗外,患者的参与对于改善依从性和支持患者的生活质量至关重要,尤其是在选定的患者中,例如接受扩展辅助疗法或与靶向疗法结合的患者。 对现代技术的描述提供了为这一重要目标做出贡献的描述。今天,AIS在治疗激素受体阳性乳腺癌中起着核心作用。在这项研究中,专家小组回顾了有关AIS使用的文献,讨论了它们在乳腺癌的各个方面的使用,从乳腺癌前和绝经后早期乳腺癌到转移性乳腺癌,以及其有关效率和毒性的管理。鉴于在改善日常临床实践中的生存方面取得的出色结果,临床医生需要解决他们对治疗持续时间的担忧以及对骨骼健康,心血管系统和代谢的不利影响。目前,除了癌症治疗外,患者的参与对于改善依从性和支持患者的生活质量至关重要,尤其是在选定的患者中,例如接受扩展辅助疗法或与靶向疗法结合的患者。对现代技术的描述提供了为这一重要目标做出贡献的描述。
图15.4:(a)两个双z切入点之间的逻辑CNOT操作的电路图,由双X式量子介导。在此过程中,测量目标量子位,并以|+⟩初始化了新的双z切割量子标式,以取代目标值。(b)描述执行三个CNOT步骤的孔的编织的描述:每个双Z(x) - cut量子值以一对黑色(蓝色)线表示,其中沿x轴显示孔的孔的移动。在初始化或测量量子线时,对应于同一量子的两个孔的两条线。(c)简化编织的表示形式,仅作为栅极的中间工具显示双X-Cut值。实际上,双Z切量盘根本不需要移动,并且可以在测得的旧目标的位置初始化新的目标量子定位。(d) - (f)在两个双X切位数之间间接cnot的等效表示。[FMMC12]。在美国物理社会的[FMMC12]版权所有(2012年)的允许下转载数字。... 176
背景:静息态功能性磁共振成像 fMRI (rs- fMRI) 已广泛用于研究精神疾病的大脑功能,从而深入了解大脑组织。然而,rs-fMRI 数据的高维性给数据分析带来了重大挑战。变分自动编码器 (VAE) 是一种神经网络,在提取静息态功能连接 (rsFC) 模式的低维潜在表示方面发挥了重要作用,从而解决了 rs-fMRI 数据的复杂非线性结构。尽管取得了这些进展,但解释这些潜在表示仍然是一个挑战。本文旨在通过开发可解释的 VAE 模型并使用 rs-fMRI 数据在自闭症谱系障碍 (ASD) 中测试其效用来解决这一差距。
