本科FTE:1,023毕业生FTE:1,440财务结构类型:非营利性赞助:否相关实体学术日历:季度分发联邦Finanicial帮助:是
•专业知识:审稿人应了解北方公园法西里亚,法西里亚属或类似物种或生态系统的知识或经验。•独立性:审阅者不应雇用该服务。学术,咨询或政府科学家应具有足够的独立性。•客观性:审稿人应被其同龄人认可为客观,开放和周到。此外,审稿人应该愿意分享他或她的知识和观点,并公开识别他或她的知识差距。•利益冲突:审稿人不应有冲突或可能损害其客观性或创造不公平竞争优势的任何财务或其他利益。如果其他合格的审查员有不可避免的利益冲突,则该服务可能会公开披露冲突。虽然专业知识是主要的考虑因素,但该服务将选择同行评审者(但不限于这些选择),这些选择增加了与北公园Phacelia的物种状态评估报告相关的多样性科学观点。我们将不会为同行评审者提供经济补偿。我们将征求至少三位合格专家的评论。
摘要 - 递增能力分析(ICA)和不同的电压分析(DVA)通常需要电池降解监控的恒定当前条件,这限制了它们在现实情况下的适用性。本文提出了一种统一的方法,可以在一般充电当前概况下启用基于ICA/DVA的降解监测,这在文献中尚未解决。首先,提出了一种新颖的虚拟增量能力(IC)和不同电压(DV)的概念。第二,两个相关的卷积神经网络(CNN),称为U-NET和CONC-NET,是为了构建虚拟IC/DV曲线的构建,并估算了跨任何状态(SOC)范围内的一般充电概况的健康状况(SOH),以满足某些约束。最后,提出了两个称为移动U-NET和移动网络的CNN,分别替换了U-NET和Conv-NET以进行车载实现。它们会大大减少计算和内存需求,同时在虚拟IC/DV曲线构建和SOH估计中保留性能。在具有各种快速充电协议和SOC范围的电池模块的广泛实验数据集上进行了测试,拟议的U-NET和移动U-NET构造精确的虚拟IC/DV曲线可以提取有价值的降级功能。建议的Conv-NET和移动网络提供的模块级SOH估计值,根平方误差(RMSE)小于0.5%。关键字 - 增量容量分析;差分伏分析;非恒定电流充电;快速充电;卷积神经网络;健康状况估计
摘要:具有控制尺寸和表面化学的胶体纳米晶体的显着发展导致了巨大的光电应用。,但是它们还可以形成量子材料的平台,哪种电子相干性是关键的?在这里,我们使用胶体,二维BI 2 SE 3晶体,在100 nm范围内具有精确且均匀的厚度和有限的横向尺寸来研究拓扑绝缘子从三个维度到两个维度的演变。对于4-6个五重列层的厚度,扫描隧道光谱显示出一个8 nm宽的非散发状态,环绕着血小板。我们通过低能连续模型和从头算GW-Tight结合理论讨论了这种边缘状态的性质。我们的结果还提供了设备上此类状态的最大密度的指示。关键字:边缘状态,士兵硒化纳米片,扫描隧道光谱,拓扑绝缘子,密度功能理论,量子旋转厅绝缘子
b'b't量子Zeno效应以最简单的形式描述了量子系统的频率测量可以减慢其时间演变的现象,最终导致其停止完全改变。已广泛研究了封闭的量子系统[BN67,MS77,CHE72,FRI76,FP08,EI05,EI21]和开放量子系统[MS03,BZ18,BFN + 20,MW19,MW19,MW19,MAT04,GL \ XC2 \ XC2 \ XC2 \ XA8U16,BDS21,MRM MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR M \ XC2 \ XA8O24]和现象的实验验证是在[IHBW90,FGMR01,SMB + 06,SHC + 14]中实现的。量子ZENO效应具有各种应用,例如在控制反应[FJP04,HRB + 06],量子误差校正[EARV04,PSRDL12]和状态准备[NTY03,NUY04,WYN08]中。在这里,我们考虑以下在量子动力学半群下进化的无限二维开放量子系统中的量子zeno效应的一般设置,该系统由e t l'
摘要:太阳能不仅是地球上最丰富的能量,而且还可以续签。这种能量的使用主要通过光伏技术非常迅速地扩展。但是,电力存储仍然是解决太阳资源可变性的瓶颈。因此,当需要存储能量时,太阳能热能就会特别感兴趣,因为热能存储比电力存储便宜得多。本文的目的是简短更新CSP(浓缩太阳能)市场,截至2023年。它基于CSP-GURU数据库,该数据库列出了有关世界各地CSP发电厂的信息。尽管此数据库是打开的,但发现上解析分析并不容易。提出了这种扩展技术的概述,并提供了具有最重要信息的可读数字。这包括全球安装能力的演变以及即将到来的项目(正在建设)和技术趋势。讨论了存储能力和工作温度的演变。还提供了投资成本和电力成本,以获取可靠的数据以与其他能源技术进行比较。特定的土地要求以及整体效率。在本文中讨论了相关示例。最终,它概述了CSP景观的演变,其有用的信息用于科学和教育目的。
大多数物理学家通过热力学引入熵。熵是控制绝热过程下转换的基本和独特数量:当且仅当熵不降低1时,才能实现封闭系统的两个兼容状态之间的转换。但是,它在信息理论的更抽象领域中也具有至关重要的作用。尤其是一种称为相对熵的发电,提供了一种测量概率分布之间的区分性的方法。将概念扩展到量子状态很具有挑战性,因为量子状态的非交通性特征意味着有许多可能的方法可以定义这种扩展。一种独特而明确的解决方案来自量子假设检验的研究,其中为我们提供了两个量子状态之一ρ或σ的多个副本,目标是区分两种状态。将ρ误以为σ的概率与副本的数量成倍衰减,相应的指数完全由相对熵的量子变体给出。
摘要 - 近年来,在所谓的可认证感知方法的发展中取得了显着进步,这些方法利用半闪烁,凸出放松,以找到对机器人技术中的感知问题的全球最佳选择。然而,其中许多放松依赖于简化促进问题制定的假设,例如各向同性测量噪声分布。在本文中,我们探讨了矩阵加权(各向异性)状态估计问题的半决赛松弛的紧密性,并揭示了其中潜伏在其中的局限性:基质加权因素会导致凸的松弛因失去紧密度。特别是我们表明,矩阵权重的本地化问题的半决赛松弛仅对于低噪声水平可能很紧。为了更好地理解这个问题,我们引入了状态估计的后验不确定性与通过凸面重新获得的证书矩阵之间的理论联系。考虑到这种联系,我们从经验上探讨了导致这种损失的因素,并证明可以使用冗余约束来恢复它。作为本文的第二项技术贡献,我们表明,当考虑矩阵重量时,不能使用标量加权大满贯的状态放松。我们提供了一种替代配方,并表明其SDP松弛并不紧密(即使对于非常低的噪声水平),除非使用特定的冗余约束。我们在模拟和现实世界数据上证明了制剂的紧密度。