理解 Z 变换、逆 z 变换和离散方程、采样器、保持装置的作用 学生能够分析任何离散数据控制系统的稳定性 分析所考虑的 MIMO 离散时间系统。(状态空间模型、可控性、可观测性) 设计所考虑的离散时间控制系统的状态反馈控制器 为所考虑的系统设计补偿器和离散控制器 教学大纲:采样数据控制系统、采样过程、理想采样器、香农采样定理、采样时间选择、零阶保持(ZOH)。z 变换、ZOH 的逆 Z 变换脉冲传递函数、系统稳定性、z 平面稳定性、极坐标图分析、使用根轨迹图的稳定性分析、Z 平面稳态误差分析、离散时间系统的状态空间模型、可控性和可观测性、通过状态反馈分配特征值、卡尔曼滤波、李雅普诺夫稳定性分析、补偿器设计。书籍:1. BC Kuo,数字控制系统,Oxford2014 2. KMMoudgalya,数字控制,Wiley India2015 3. Gopal,数字控制和状态变量方法,Mc Graw Hill,2014 MEE 903:非传统能源和发电 100 分
马尔可夫决策过程 (MDP) 为在不确定的情况下对顺序决策进行建模提供了一个广泛的框架。MDP 有两种类型的变量:状态变量 st 和控制变量 dr,它们都按时间 t = 0、1、2、3 .... , T 进行索引,其中时间范围 T 可能是无穷大。决策者或代理可以用一组原语 (u, p, ~) 表示,其中 u(st, dr) 是代表代理在时间 t 的偏好的效用函数,p(st+ 1Is, d,) 是代表代理对不确定未来状态的主观信念的马尔可夫转移概率,fit(0, 1) 是代理在未来时期内折现效用的比率。假设代理是理性的:它们的行为遵循最优决策规则 d t = (~(St),该规则求解 vr(s) - max~ Eo { E r o fltu(s,, d,)l So = s},其中 Ea 表示对由决策规则 6 引起的受控随机过程 {s,,dt} 的期望。动态规划方法 min9 提供了一种建设性的过程,用于计算 6,使用价值函数 V r 作为“影子价格”,将复杂的随机/多周期优化问题分散为一系列更简单的确定性/静态优化问题。
随着风电大规模接入,电力系统不仅要应对传统的电力需求波动,还要应对风电的不确定性。为提高源负荷不确定性条件下电力系统的经济性、弹性和环境保护,提出了一种风火水储一体化系统的实时低碳调度。通过多种资源的协同线性决策来消除不确定性造成的功率不平衡。为解决源负荷不确定性,引入随机稳健优化,通过稳健优化建立系统约束以实现弹性运行,同时在经验不确定性分布中优化预期运行成本以实现经济效率。此外,采用多点估计来精确快速地计算预期运行成本。利用对偶理论,将所提出的实时电力调度推导为混合整数双线性约束规划。针对复杂的调度问题,提出了一种多步顺序凸化解决方案,利用交替优化将双线性约束线性化,并采用“估计-校正”策略放宽储能状态变量。最后,案例研究证明了所提出的调度方法和凸化解决方案的优越性。
马尔可夫决策过程 (MDP) 为在不确定的情况下对顺序决策进行建模提供了一个广泛的框架。MDP 有两种类型的变量:状态变量 st 和控制变量 dr,它们都按时间 t = 0、1、2、3 .... , T 进行索引,其中时间范围 T 可能是无穷大。决策者或代理可以用一组原语 (u, p, ~) 表示,其中 u(st, dr) 是代表代理在时间 t 的偏好的效用函数,p(st+ 1Is, d,) 是代表代理对不确定未来状态的主观信念的马尔可夫转移概率,fit(0, 1) 是代理在未来时期内折现效用的比率。假设代理是理性的:它们的行为遵循最优决策规则 d t = (~(St),该规则求解 vr(s) - max~ Eo { E r o fltu(s,, d,)l So = s},其中 Ea 表示对由决策规则 6 引起的受控随机过程 {s,,dt} 的期望。动态规划方法 min9 提供了一种建设性的过程,用于计算 6,使用价值函数 V r 作为“影子价格”,将复杂的随机/多周期优化问题分散为一系列更简单的确定性/静态优化问题。
临时教员人数:05 访问教员人数:03 专业:控制系统、仪器仪表、电力系统、能源系统、电机、电力电子、电气驱动、照明工程。 教授科目:理论:1. 电力系统运行与控制 2. 先进过程控制与仪器仪表。3. 采矿电气技术,4. 电气和电子测量,5. 物理系统建模与控制,6. 照明科学、工程与设计,7. 其他部门的基础电气工程。学期:1. 电工技术实验室,2. DC-II/III(PES 的先进电力系统分析和电力系统运行与控制)学期,3. 控制系统仿真实验室,4. 过程控制和仪表实验室,6. 测量实验室,8. 物理系统建模与控制实验室,9. 数值仿真和应用工具实验室,10. 电机实验室,11. 新能源和可再生能源实验室,12. DC-I(状态变量分析)学期,13. 不同部门不同科室的基础电气工程实验室,14. CSI(离散和数字系统理论和先进过程控制与仪表)的 DC-II/III 学期,15. 先进过程控制与仪表实验室,16. 先进电力系统分析实验室。
目的。本研究旨在了解 B.Ed. 课程的学生教师如何利用 AI 进行教育,以及他们对 AI 在教育中的总体使用看法。方法。本研究采用调查法。印度浦那 Savitribai Phule Pune 大学 B.Ed 课程的学生教师和在浦那 Tilak 教育学院学习的学生教师参加了调查。问卷是本研究的数据收集工具。问卷通过 Google 表单在 WhatsApp 群组中分发,该表单包含 12 个问题,可根据状态变量进行选择。结果。使用百分比对 12 个问题进行数据分析,并以饼图形式呈现每个问题。结果总结出,大多数学生教师使用 ChatGPT,大多数学生教师使用 AI 进行课程、实践、报告和演示,学生教师有时以有限的方式使用 AI。根据实习教师的分析,不应禁止使用人工智能,但应有法规和指导方针。结论。研究强调,实习教师在课程中使用人工智能,他们支持在教育中使用人工智能。因此,需要最高机构就人工智能在教育中的使用制定一般指导方针,而不是全面禁止人工智能。
摘要:钒氧化还原电池(VRFB)在过去几十年中在混合储能系统(HESS)中发挥了重要作用,这是由于其独特的特征和优势。因此,对VRFB模型的准确估计在大规模存储应用中非常重要,因为它们对于在嵌入式能源体系结构中纳入了储能系统和控制算法的独特特征是必不可少的。在这项工作中,我们提出了一种新颖的方法,该方法结合了基于模型的和数据驱动的技术来预测电池状态变量,即电荷状态(SOC),电压和电流。我们的建议利用增强了深层增强学习技术,特别是深层Q学习(DQN),通过将Q学习与神经网络相结合以优化VRFB特异性参数,从而确保真实数据和模拟数据之间的稳健拟合度。我们提出的方法在电压预测中的现有方法优于现有方法。随后,我们通过纳入了第二种深度RL算法(Dueling DQN)来增强所提出的方法,这是DQN的改进,结果提高了10%的结果,尤其是在电压预测方面。所提出的方法导致了准确的VFRB模型,该模型可以推广到几种类型的氧化还原流量。
ECE3111。系统分析和设计。(4个学分)使用频率和时间域方法对控制系统进行建模,分析和设计。微分方程,传输函数,信号流图和连续和离散时间系统的状态变量表示。非线性系统的线性化。二阶系统的瞬态和频率响应。线性系统具有反馈的稳定性; Routh Hurwitz,根源基因座,Bode和Nyquist方法。 可控性和可观察性。 用于分析线性系统的计算方法。 基于团队的设计项目涉及建模,经典补偿器设计和状态可变反馈设计。 注册要求:ECE 3101或BME 3400;数学2210Q,可以同时进行。 仅向工程学院的学生开放。 查看类(https://catalog.uconn.edu/course-search/? 详细信息和代码= ECE%203111)线性系统具有反馈的稳定性; Routh Hurwitz,根源基因座,Bode和Nyquist方法。可控性和可观察性。用于分析线性系统的计算方法。基于团队的设计项目涉及建模,经典补偿器设计和状态可变反馈设计。注册要求:ECE 3101或BME 3400;数学2210Q,可以同时进行。仅向工程学院的学生开放。查看类(https://catalog.uconn.edu/course-search/?详细信息和代码= ECE%203111)
摘要 本文提出了一种增强型三层预测分级电源管理框架,以实现孤岛微电网的安全经济运行。保证微电网经济运行的三级控制建立在基于半定规划的交流最优潮流模型之上,该模型定期向二级控制发送功率参考。为减轻可再生能源发电和负荷带来的不确定性,提出并实施了一种集中式线性模型预测控制 (MPC) 控制器用于二级控制。MPC 控制器可以通过密切跟踪来自三级控制器的参考信号来有效地调节微电网系统频率,并且计算复杂度较低。实施基于下垂的初级控制器来与次级 MPC 控制器协调,以实时平衡系统。微电网电源管理框架中模拟了同步发电机 (SG) 和太阳能光伏 (PV)。提出了一种统一线性输入状态估计器 (ULISE),用于 SG 状态变量估计和由于网络物理系统组件受损等而导致的控制异常检测。仿真结果表明,可以准确估计 SG 状态,同时可以有效检测控制信号的不一致性,以实现增强型 MPC。此外,与传统的比例积分 (PI) 控制相比,所提出的分层电源管理方案表现出卓越的频率调节能力,同时保持较低的系统运行成本。
Yingyao Hu是Johns Hopkins University的Krieger-Eisenhower经济学教授,他自2007年以来一直在那里工作。。 在加入霍普金斯之前,他曾是德克萨斯大学奥斯汀分校经济学助理教授四年。 他是霍普金斯校友,拥有数学科学的MSE和2001年的经济学硕士学位,并在2003年获得经济学博士学位。 他还曾在密歇根州立大学,上海的Fudan大学和北京的Tsinghua大学学习。 在此之前,他在中国新疆出生和长大。 他的研究兴趣包括微观经济学,经验工业组织和劳动经济学。 在微观经纪学中,他的研究集中在测量误差模型,混合模型,具有固定效应或未观察到的协变量的面板数据模型以及通常具有潜在变量的微观经济模型上的非参数识别和估计。 他对以应用程序为导向的计量经济学特别感兴趣,在这种计量经济学中,计量经济学方法与经济理论或故事密切相结合。 在经验工业组织中,他在拍卖模式中致力于未观察到的异质性,具有未观察到的状态变量的动态模型,学习模型中的信念更新,生产功能的估计以及具有主观信念的动态离散选择。 在劳动经济学中,他的研究在纠正了当前人口调查中的自我报告错误之后,涉及美国的失业率,长期以来对中国失业率的可靠估计以及飓风对美国东海岸的生育能力的影响。Yingyao Hu是Johns Hopkins University的Krieger-Eisenhower经济学教授,他自2007年以来一直在那里工作。在加入霍普金斯之前,他曾是德克萨斯大学奥斯汀分校经济学助理教授四年。他是霍普金斯校友,拥有数学科学的MSE和2001年的经济学硕士学位,并在2003年获得经济学博士学位。他还曾在密歇根州立大学,上海的Fudan大学和北京的Tsinghua大学学习。 在此之前,他在中国新疆出生和长大。 他的研究兴趣包括微观经济学,经验工业组织和劳动经济学。 在微观经纪学中,他的研究集中在测量误差模型,混合模型,具有固定效应或未观察到的协变量的面板数据模型以及通常具有潜在变量的微观经济模型上的非参数识别和估计。 他对以应用程序为导向的计量经济学特别感兴趣,在这种计量经济学中,计量经济学方法与经济理论或故事密切相结合。 在经验工业组织中,他在拍卖模式中致力于未观察到的异质性,具有未观察到的状态变量的动态模型,学习模型中的信念更新,生产功能的估计以及具有主观信念的动态离散选择。 在劳动经济学中,他的研究在纠正了当前人口调查中的自我报告错误之后,涉及美国的失业率,长期以来对中国失业率的可靠估计以及飓风对美国东海岸的生育能力的影响。他还曾在密歇根州立大学,上海的Fudan大学和北京的Tsinghua大学学习。在此之前,他在中国新疆出生和长大。他的研究兴趣包括微观经济学,经验工业组织和劳动经济学。在微观经纪学中,他的研究集中在测量误差模型,混合模型,具有固定效应或未观察到的协变量的面板数据模型以及通常具有潜在变量的微观经济模型上的非参数识别和估计。他对以应用程序为导向的计量经济学特别感兴趣,在这种计量经济学中,计量经济学方法与经济理论或故事密切相结合。在经验工业组织中,他在拍卖模式中致力于未观察到的异质性,具有未观察到的状态变量的动态模型,学习模型中的信念更新,生产功能的估计以及具有主观信念的动态离散选择。在劳动经济学中,他的研究在纠正了当前人口调查中的自我报告错误之后,涉及美国的失业率,长期以来对中国失业率的可靠估计以及飓风对美国东海岸的生育能力的影响。在劳动经济学中,他的研究在纠正了当前人口调查中的自我报告错误之后,涉及美国的失业率,长期以来对中国失业率的可靠估计以及飓风对美国东海岸的生育能力的影响。yingyao已发表在许多经济学和统计学领域的领先期刊上,例如美国经济评论,计量经济学,美国统计协会杂志,《计量经济学杂志》,《计量经济学,游戏与经济行为》,人口经济学杂志和比较经济学杂志。他是《计量经济学杂志》的院士,并曾在几个期刊的编辑委员会任职。他还是《计量错误》杂志特刊杂志的共同编辑。yingyao与三个小孩结婚多年。从他们的角度来看,Yingyao是一位不做任何事情的老师。