第一单元 UML 简介、建模的重要性、建模原则、面向对象建模、UML 的概念模型、UML 的架构、软件开发生命周期。第二单元 基础结构建模、类、关系、通用机制、基本图表、高级结构建模、高级类、高级关系、接口、类型和角色、包。类图和对象图、术语、概念、类图的建模技术第三单元 基础行为建模-I、交互、交互图。基础行为建模-II、用例、用例图、活动图。 UNIT-IV 高级行为建模、事件和信号、状态机、进程和线程、时间和空间、状态图表。架构建模、组件、部署、组件图、部署图。UNIT V 案例研究、统一库应用程序。教科书:Grady Booch、James Rumbaugh、Ivar Jacobson:统一建模语言用户指南,Pearson Education。参考文献:1. Grady Booch、James Rumbaugh 和 Ivar Jacobson,“统一建模语言用户指南”,Addison Wesley,2004 年。2. Ali Bahrami,“面向对象系统开发”,Tata McGraw Hill,新德里。3. Meilir Page-Jones:UML 中的面向对象设计基础,Pearson Education。成果:成功完成本课程后,学生应能够:
在本文中,我们提出,设计和评估一个系统的定向模糊框架,以自动在任意蓝牙经典(BT)设备中自动发现构成错误。我们的fuzzer的核心是第一个直播方法,它可以完全控制主机的BT控制器基带。这使我们能够拦截和修改任意数据包,并在封闭源BT堆栈的下层中注入数据包,即链接管理器协议(LMP)和基数。为了系统地指导我们的模糊过程,我们提出了一种可扩展且基于新颖的规则的方法,用于在非空中通信期间自动构建协议状态机。尤其是,通过编写一组简单的规则来识别协议消息,我们可以二合作构建一个抽象的协议状态计算机,由状态产生的模糊数据包并验证来自TAR- GET设备的响应。截至今天,我们已经从11位供应商那里融合了13个BT设备,并且我们发现了总共有18个未知的突出量,并分配了24个常见脆弱性暴露(CVE)。此外,我们的发现获得了某些供应商的六个漏洞赏金。最后,为了显示BT以外的框架的更广泛的适用性,我们扩展了绒毛其他无线协议的方法,该协议还显示了某些Wi-Fi和Ble主机堆栈中的6个未知错误。
摘要 - 依赖性量化(DQ)是多功能视频编码(VVC)标准中的关键编码工具之一。dq采用两个标量量化器,每个标量量化器的选择受奇偶元驱动的四州状态机的控制。由于设计是规范上执行的,因此DQ的使用需要汇率优化的量化(RDOQ),并具有每个系数决策和状态更新,例如基于网格的量化,最初针对VVC参考软件(VTM)提出。由于其固有的依赖性(包括基于先前编码的系数值的VVCS上下文选择)以及相当广泛的搜索范围,因此Trellis量化在计算上是高度复杂的。降低该算法的复杂性对于实用的VVC编码器至关重要。在本文中,我们提出了一个快速依赖的量化格子搜索,通过以下方式改进了初始设计:不可能的分支的格子修剪,正向自适应上下文传播,最后是矢量化的实现。在开放和优化的VVEND编码器中提出的建议方法将量化运行时减少了37%,允许在中等预设中总体15%的编码器加速,而在全intra编码条件下对压缩性能没有影响。在随机访问条件下,实现了9%的整体编码器加速。索引项 - VVC,VVEN,量化,格子,矢量。
该芯片是一个16位I/O扩展器。它通过I 2 C或SMBus接口为大多数MCU系列提供远程GPIO扩展。CA9555有两个8位输入端口寄存器、输出端口寄存器、配置寄存器(设置为输入或输出)和极性反转寄存器(高电平有效或低电平有效)。上电后,16个I/O引脚配置为输入,并带有至V CC 的内部弱上拉电阻。然而,主机可以通过设置配置寄存器位单独将I/O引脚启用为输入或输出。如果没有外部信号施加到CA9555的I/O引脚,由于内部上拉电阻,电压电平为高。每个输入或输出的数据都存储在相应的输入或输出端口寄存器中。输入端口寄存器的极性可以通过极性反转寄存器反转。主机可以使用上电复位功能复位芯片,复位可能是由于超时或其他不当操作引起的,该功能将所有寄存器复位为默认状态并初始化 I 2 C/SMBus 状态机。该芯片具有输出锁存功能,可在使用高电流能力直接驱动 LED 时保护芯片。当任何输入状态与其对应的输入端口寄存器状态不同时,CA9555 开漏中断输出将被激活,并用于向系统主机指示输入状态已发生变化。可用封装:TSSOP-24、QFN4x4-24 封装。
1. IGNagrath,《模拟电子学》,PHI 2. 《模拟电子学》,AK Maini,Khanna 出版社 3. 《微电子工程》——Sedra 和 Smith-Oxford。 4. 《电子设备和电路原理》——BL Thereja 和 Sedha——S Chand 5. 《数字电子学》——Kharate——Oxford 6. 《数字电子学——逻辑和系统》,J.Bigmell 和 R.Donovan 编著;Cambridge Learning。 7. 数字逻辑和状态机设计(第 3 版)– DJComer,OUP 8. 电子设备与电路理论 – Boyelstad & Nashelsky - PHI 9. Bell-Linear IC & OP AMP—Oxford 10. P.Raja- 数字电子学- Scitech Publications 11. Morries Mano- 数字逻辑设计- PHI 12. RPJain—现代数字电子学,2/e,McGraw Hill 13. H.Taub & D.Shilling,数字集成电子学- McGraw Hill。14. D.RayChaudhuri- 数字电路-Vol-I & II,2/e- Platinum Publishers 15. Tocci,Widmer,Moss- 数字系统,9/e- Pearson 16. J.Bignell & R.Donovan- 数字电子学-5/e- Cenage Learning。 17. Leach & Malvino—数字原理与应用,第 5 版,McGraw Hill 18. Floyed & Jain- 数字基础-Pearson。课程成果:ESC 301.1 定义基本模拟电路,例如放大器、Wein 桥振荡器、多谐振荡器、Schimtt 触发器和 555 定时器。ESC 301.2 使用二进制数字系统和布尔代数的基础知识区分模拟系统和数字系统。
A 主题:面向对象分析与设计 分支:CSE 师资:博士,教授(CSE)12IT302CV 面向对象分析与设计 教学:每周 4 节课 学分:4 学期分数:25 期末考试:75 分 期末考试时长:3 小时 第一单元 UML 简介 – CO1:建模的重要性 – CO1、建模原则 – CO1、面向对象建模 – CO1、UML 的概念模型 – CO1、架构 – CO1、软件开发生命周期 – CO1。第二单元基本结构建模 - CO2:类 – CO2、关系 – CO2、常见机制 – CO2 和图表 – CO2。高级结构建模 – CO2:高级类 – CO2、高级关系 CO2、接口、类型和角色 – CO2、包 – CO2。第三单元类图和对象图 – CO1 & CO2:术语 – CO1 & CO2、概念 – CO1 & CO2、类图和对象图的建模技术 – CO1 & CO2。第四单元基本行为建模-I – CO2:交互 CO2、交互图 CO2。第五单元基本行为建模-II – CO2 & CO3:用例 – CO2 & CO3、用例图 – CO2 & CO3、活动图 – CO2 & CO3。第六单元高级行为建模 – CO2 & CO3:事件和信号 – CO2 & CO3、状态机 – CO2 & CO3、流程和线程 – CO2 & CO3、时间和空间 – CO2 & CO3、状态图 – CO2 & CO3。第七单元架构建模 – CO4:组件 – CO4、部署 – CO4、组件图 – CO4 和部署图 – CO4。第八单元案例研究:统一库应用程序 – CO5。特克斯
摘要:除了将光伏电池板产生的能量储存在电池中以备日后用于为电力负载供电外,还可以生产绿色氢气并将其用于运输、供暖和作为天然气替代品。绿色氢气是在电解过程中产生的。通常,电解器可以从可再生能源等波动电源中产生氢气。然而,由于电解器的启动时间和多次关机加速的电解器退化,需要空闲模式。在空闲模式下,电解器使用额定电解器负载的 10%。应采用能源管理系统 (EMS),其中使用锂离子电容器或锂离子电池等存储技术。本文使用 PV 微电网的状态机 EMS 进行绿色氢气生产和储能,以管理早上利用太阳能和晚上利用储能中存储的能量进行氢气生产,储能的大小针对使用锂离子电容器和锂离子电池的不同场景而定。考虑到系统在澳大利亚气候下的局部辐照度和温度条件,对锂离子电容器和锂离子电池的任务概况和预期寿命进行了评估。针对不同场景,评估了存储大小和氢气生产截止点作为成本函数变量之间的权衡。针对每个测试场景比较锂离子电容器和锂离子电池的最佳寿命。研究发现,与锂离子电容器相比,锂离子电池平均大 140%,但锂离子电容器由于日历老化程度较高,运行十年后剩余容量较小,为 80.2%,而 LiB 为 86%。还注意到,LiB 受循环老化的影响更大,而 LiC 受日历老化的影响更大。然而,锂离子电容器10年后的平均内阻是初始内阻的264%,而锂离子电池10年后的平均内阻为346%,因此,如果用于电网调节,锂离子电容器是更适合的储能选择,因为它需要在储能的整个使用寿命期间保持较低的内阻。
A 主题:面向对象分析与设计 分支:CSE 师资:博士,教授(CSE)12IT302CV 面向对象分析与设计 教学:每周 4 节课 学分:4 学期分数:25 期末考试:75 分 期末考试时长:3 小时 第一单元 UML 简介 - CO1:建模的重要性 - CO1、建模原则 - CO1、面向对象建模 - CO1、UML 的概念模型 - CO1、架构 - CO1、软件开发生命周期 - CO1。第二单元基本结构建模 - CO2:类 - CO2、关系 - CO2、常见机制 - CO2 和图表 - CO2。高级结构建模 - CO2:高级类 - CO2、高级关系 CO2、接口、类型和角色 - CO2、包 - CO2。第三单元类图和对象图 – CO1 & CO2:术语 – CO1 & CO2、概念 – CO1 & CO2、类图和对象图的建模技术 – CO1 & CO2。第四单元基本行为建模-I – CO2:交互 CO2、交互图 CO2。第五单元基本行为建模-II – CO2 & CO3:用例 – CO2 & CO3、用例图 – CO2 & CO3、活动图 – CO2 & CO3。第六单元高级行为建模 – CO2 & CO3:事件和信号 – CO2 & CO3、状态机 – CO2 & CO3、流程和线程 – CO2 & CO3、时间和空间 – CO2 & CO3、状态图 – CO2 & CO3。第七单元架构建模 – CO4:组件 – CO4、部署 – CO4、组件图 – CO4 和部署图 – CO4。第八单元案例研究:统一库应用程序 – CO5。教科书:1. 统一建模语言用户指南,Ivar Jacobson 和 Grady Booch,James Rumbaugh,Pearson Education,2009 年。2. UML 2 工具包,Magnus Penker、Brian Lyons、David Fado 和 Hans-Erik Eriksson,Wiley-Dreamtech India Pvt.Ltd.,2004 年。参考文献:1. UML 中的面向对象设计基础,Meilir Page-Jones,Pearson Education,2000 年。2. 使用 UML2 建模软件系统,Pascal Roques,Wiley-Dreamtech India Pvt. Ltd.,2007 年。3. 面向对象分析和设计,Atul Kahate,第 1 版,McGraw-Hill Companies,2007 年。
基于皮层脑电图 (ECoG) 的双向脑机接口 (BD-BCI) 引起了越来越多的关注,因为:(1) 需要同时进行刺激和记录以恢复人类的感觉运动功能 [1] 和 (2) 良好的空间分辨率和信号保真度以及临床实用性。在刺激方面,这种 BD-BCI 可能需要 >10mA 的双相电流来引发人工感觉,以及 >20V 的电压顺应性以适应各种生物阻抗 [1]。两个刺激相之间的电荷不匹配会导致电压积累,从而造成电极腐蚀和组织损伤。现有的电荷平衡 (CB) 技术,例如电荷包注入 (CPI) [2] 和基于时间的电荷平衡 (TCB) [1],会在脉冲间隔内产生 CB 电流,导致不必要的二次感觉和过度的刺激伪影 (SA)。对于记录,低输入参考噪声 (IRN) 是获取小神经信号 (NS) 所必需的,而大动态范围 (DR) 则是容纳大 SA 所必需的。现有的记录系统采用 SAR [1] 或连续时间 delta-sigma (CT-ΔΣ) [3] ADC(图 4)。前者由于 DAC 不匹配而具有有限的 DR,而后者则受到环路延迟内大幅度尖锐 SA 引起的失真的影响。尽管在 [4] 中,ΔΣ-ADC 的采样频率会自适应地变化以适应 SA,但所需的稳定时间很长。为了解决上述问题,本文提出了一种基于 ECoG 的 BD-BCI,其中包括:(1) 具有双模基于时间的电荷平衡 (DTCB) 的高压 (HV) 刺激系统和 (2) 高动态范围 (HDR) 时域流水线神经采集 (TPNA) 系统。图 1 描绘了所提出的 BD-BCI。刺激系统包括 4 个刺激器,每个刺激器包括一个 8 位分段电流控制 DAC 和一个 HV 输出驱动器,用于生成刺激脉冲。为了执行 CB,每个刺激器都采用具有 2 种模式的 DTCB 环路,即无伪影 (AL) TCB 和脉冲间有界 (IB) TCB 模式。3 阶 II 型 PLL 为基于时间的量化创建所需的时钟。记录系统有 4 个通道,每个通道都采用低增益模拟前端 (LG-AFE)、HDR 电压时间转换器 (VTC)、两步流水线 (TSP) TDC 和一个数字核心,其中操作模式由状态机控制。受 [1] 的启发,所提出的 DTCB 的工作原理如图 2 所示。AL-TCB 监测电极电压 V ESn -V CM (1≤n≤N;此处,N=4)并调整后续刺激脉冲的幅度而不产生额外的 SA,而当 |V ESn -V CM | 过大而需要立即去除电荷时,IB-TCB 在下一个刺激脉冲之前完成 CB。在第一个 T CC 开始时,如果 |V ESn - V CM |≤V TH,AL (V TH,AL 是标志着需要立即去除电荷的过电位阈值),则 AL-TCB 导通,并且 V ESn - V CM 在第一个 T CC 周期内由 VTC 和 TDC 数字化。然后将数字数据 D TDCn 馈送到通道间干扰消除 (ICIC) 模块,该模块可补偿由于多极刺激导致的通道间干扰 (ICI) 引入的电压误差。接下来,数字直流增益增强器 (DDGB) 有助于提高 CB 精度,而不会降低 AL-TCB 环路稳定性。为了执行 CB,AL-TCB 的电流(例如,I AL-Cn )(其大小由 DDGB 输出 D ALn 控制)被添加到后续刺激电流中以调整其大小。相反,仅当 |V ESn -V CM |>V TH,AL 时,IB-TCB 才会开启并在一个 T IP 内的几个 T CC 中执行 CB,直到 |V ESn - V CM |
摘要 自动构建一个完整的 .完整的文档 .教育性 .国家文件 .来自分散的 .图像和知识的碎片 .知识是一个重要的 .不可分解的 .挑战 .证据 .这些信息 .在注释中提供 .供 .材料,生产 .顺序问题。结构、构造。构造和动画。图像的配对序列。图像和产品。计算数。自然语言。描述。对应于这些图像的描述。多个。三重构造。雨,每个。ch 个体。个人不同。icult 任务。本文描述。是一个应用程序。tac 的 roach 。kling 这些专业人士。问题。呃,一把梳子。修辞的表达。rical结构。ctu 。res 与 narra 。tive 和 fil 。将理论转化为产品。ce mo .vie-li 。ke v 。isual ani 。来自 的信息。静态图像。与自然语言处理。语言生成。生成技术。需要。编辑以提供。生产技术。描述。的描述。正在设置的单词。在动画中。信息。使用来自 N.L.G 的修辞结构。tegrate sep [ arate compon 。ents。deo cre 。ation 和 s 。脚本生成器。化。我们福。进一步描述一个imple。心理状态,名为 GLA.MOUR,即 pr 。引出实际的,笑。rt 视频文档。ntaries,焦点。在小节上唱歌。真实的她。itage 做。主要,并且 .已经过评估 .由专业 .专业电影制作 .制作者。关键词: 自动 .自动电影制作 .摄影; 自然 .语言基因 .配给; 多媒体 .媒体呈现 .entations。1 简介 随着互联网以惊人的速度扩展,计算机变得越来越普及。这些规则在整个过程中作为串行状态机实时执行。人工智能用于增强多方之间的沟通和协作。虚拟参与者已经发展成为能够在三维 (3-D) 现实中与人互动的人工智能 (AI)。这种新颖的交流方式有许多缺点,包括参与者无法看到或听到彼此的交流。某些个体难以掌握和保护三维世界,难以找到其他虚拟参与者进行交谈,也难以以所有人都能看到彼此的方式组织表示。事实上,一个多世纪以来,这两个物种一直受到相同挑战的困扰,eXit 已经发展出一套规范和惯例体系,允许通过行动进行最低限度的概念和实际交流。这些光学协议已经广泛传播,仅对有限数量的个体很重要。例如,本文探讨了人工智能和虚拟世界如何帮助三维空间通信。机器国家小伙子可以控制相机的设置并自动在它们之间切换。此外,他或她可能会聘请专业经理。演员配置尽可能最好的镜头。面对自动胶片老化现象尽管存在非官方的规定解释,但在现实世界的电影制作行业中,没有“困难”之类的东西。电影制作人在许多作品中都有提及,但并没有以明确提及的方式提及他们。此外,大多数导演都是根据预先商定的剧本进行操作的,因此有可能这样做。不成比例的原始拍摄被用作循环。用于后期操作。最后,我们是自动相机。任何时候,都必须保持实时控制。这意味着现场直播的体育赛事遇到问题的概率较低。无论我们把它放在哪里,它都不存在。了解未来,但不要指望很快就能得到解放。在这张海报上,我们可以清楚地看到实时摄像机的印记。虚拟场,或自主电影控制 (VcC)。基本电影模型有许多不同的区域。从默认的“参与者”中,可以在任何可能预期未来活动的情况下使用特定的 VOC。它可以与硬截图或天花板安装的摄像机结合使用,以产生更具沉浸感的交互式图像。