本文结构如下。我们的主要技术结果是定理 2.18,它表明与推论 1.5 中的格 L 类似的格 L 具有高概率的短向量基。使用简单的数几何(参见第 2.5 节),我们将这个问题简化为估计半径不断增长的球中的格点数。不幸的是,我们无法直接获得合适的 L 格点数。我们通过从论证一开始就考虑不同的格 LM 来解决这个问题(使用第 2.2 节中的引理)。在第 2.3 节中,我们根据模 N 的狄利克雷特征展开 LM 的格点数。这会产生一个可以精确估计的主项和一个误差项。证明的核心在于使用模 N 的狄利克雷特征的零密度估计来无条件地限制这个误差项。最后,我们在第 3 节中证明了我们的量子算法应用(定理 1.1 和 1.2)。
极性子是轻质的准颗粒,可控制纳米级量子材料的光学响应,从而实现片上的通信和局部感应。在这里,我们报告了封装在六角硼(HBN)中的Magne offer-Nedral石墨烯中的Landau-Phonon Polariton(LPP)。这些准颗粒从石墨烯中的狄拉克磁饰模式与HBN中的双曲线声子极化模式的相互作用中脱颖而出。使用红外磁纳米镜检查,我们揭示了在量化的磁场处的真实空间中完全停止LPP传播的能力,违反了常规的光学选择规则。基于LPP的纳米镜检查还分别说明了两个基本多体现象:费米速度的恢复速度和依赖于场的磁性磁性。我们的结果突出了磁性调谐的狄拉克异质结构对精确的纳米级控制的潜力和光 - 物质相互作用的传感。
约翰逊航天中心继续担任载人航天的领导者和发起者,每年不断吸引航空航天业来到大休斯顿地区和德克萨斯州。随着该中心的任务在未来几十年内扩大,以适应前往更远目的地的任务,德克萨斯州将继续为培训、规划和指挥提供完美的基地。NASA 约翰逊航天中心通过提供宇航员培训、任务控制中心运营、国际空间站计划、人类研究和商业机组领导,引领了这一进程,该中心是该机构阿尔忒弥斯计划的主要贡献者,包括猎户座、门户和探索架构、集成和科学。
k空间中的电势和bloch带。b |时间周期性潜力和能量带有浮子带。c,d | 2D狄拉克系统中的浮雕工程,导致浮点边带(红色)和谐振缝隙在交叉点开口。e,f | Ti Bi 2 Se 3中Trarpes对浮标状态的实验观察结果。在不同延迟时间(e)的表面狄拉克锥的trarpes光谱。trarpes频谱在零延迟时间(F)。g |光引起的异常大厅电流信号。h |光诱导的霍尔电导与能量的关系。i |使用Floquet理论在光激发下的有效带结构。面板E是参考文献中的trarpes数据。69,并从参考文献中转载。291,Springer Nature Limited。面板F从参考文献转载。69,Springer Nature Limited。面板G-i从参考文献中转载。71,Springer Nature Limited。71,Springer Nature Limited。
首先,需要确定现有文本的局限性,以便工作组的原则或准则能够解决这些问题。1979 年《管理各国在月球和其他天体上的活动的协定》的某些原则和准备工作可能对工作组的工作有意义(见下文)。由于资源治理问题并不完全是新问题,因此已经存在许多文本和大量国家和国际层面的法律工作,这些应该可以启发工作组的工作。工作组可以特别研究《阿尔忒弥斯协定》和海牙空间资源治理工作组工作产生的《基础模块》。还可以参考某些国家通过的管理空间资源活动的国家立法和监管文本。
摘要:由于成本效益和易于操作,室温长波红外(LWIR)检测器比低温溶液优先。当前未冷却的LWIR探测器(例如微量体计)的性能受到降低的灵敏度,缓慢的响应时间和缺乏动态光谱可调性的限制。在这里,我们提出了一个基于石墨烯的有效室温LWIR检测器,利用其可调的光学和电子特性,具有高检测性和快速响应时间。固有的弱光吸收可以通过与光腔耦合的图案化石墨烯上的狄拉克等等离子增强。通过不对称载体生成环境,通过Seebeck效应将吸收的能量转化为光伏。此外,通过静电门控实现8-12μmLWIR带中的动态光谱可调性。拟议的检测平台铺平了新一代未冷却的基于石墨烯的LWIR光电探测器,用于诸如分子传感,医学诊断,军事,安全和空间之类的广泛应用。关键字:红外探测器,石墨烯,二维材料,狄拉克等离子,光热效应
KG Suresh 研究领域:磁学和自旋电子学、拓扑物质、磁性 Skyrmions 过去几年,我的主要研究工作是识别用于包括自旋电子学在内的多功能应用的新型和潜在材料。为此,我们主要关注 Heusler 合金系列。这项工作涉及各种常规表征技术,以及一些先进和复杂的设施,例如同步辐射。我们已成功识别出一些用于半金属铁磁体、自旋无间隙半导体、双极磁性半导体和自旋半金属的潜在材料。这是通过将实验结果与理论研究相结合而实现的。从这个角度来看,还有更多的系统需要探索。最近,我们还开始关注拓扑半金属,也称为新型量子材料,其特征是块体和表面的性质不同。它们具有由块体能带结构的拓扑引起的不同表面状态。拓扑狄拉克或韦尔半金属在称为狄拉克点或韦尔点的点周围表现出线性色散。其中一个可以寻找此类材料的家族是 Heusler 合金。拟议的工作主题
摘要 我们提出了一种将物质场与高阶网络(即细胞复合体)上的离散几何耦合的理论。该方法的关键思想是将高阶网络与其度量的量子熵相关联。具体来说,我们提出了一个具有两个贡献的作用。第一个贡献与度量与高阶网络相关联的体积的对数成正比。在真空中,这个贡献决定了几何的熵。第二个贡献是高阶网络的度量与物质和规范场诱导的度量之间的量子相对熵。诱导度量根据拓扑旋量和离散狄拉克算子定义。定义在节点、边和高维细胞上的拓扑旋量为物质场编码。离散狄拉克算子作用于拓扑旋量,并通过最小替换的离散版本依赖于高阶网络的度量和规范场。我们推导了度量场、物质场和规范场的耦合动力学方程,提供了在离散弯曲空间中获取场论方程的信息论原理。
在这里,我们提出了一种镜面对称魔术角扭曲三层石墨烯的理论。通过具有远距离隧道矩阵元素的哈伯德模型来描述电子特性。通过求解平均场哈伯德模型获得电子性能。我们获得具有特征性平坦带和狄拉克锥体的带结构。在电荷中立性时,打开电子电子相互作用会导致金属至抗磁相变,其Hubbard相互作用强度比其他石墨烯多层小得多。我们分析了抗铁磁状态的固定性对六角硼氮化物封装引起的对称破裂的性能,以及由将狄拉克锥与平面带混合的电场的应用引起的镜像破坏。此外,我们探索了系统的拓扑特性,揭示了隐藏的量子几何形状。尽管平坦的频带为零,但在MoiréBrillouin区域上的多型浆果曲率分布表现出非平凡的结构。最后,我们提出了一种调整此量子几何形状的机制,提供了控制系统拓扑特性的途径。
7.5.1. 空间技术创新网络(SpIN) _______ 105 7.5.2. 地表水和海洋地形(SWOT)任务 _____________________________________ 105 7.5.3. 毅力号任务 ____________________ 106 7.5.4. 阿尔忒弥斯 1 号月球任务 __________________ 106 7.5.5. 伽马射线爆发(GRB) __________________ 106 7.5.6. GLASS 报告 2022 ______________________ 107 7.5.7. 世卫组织发布《2022 年世界疟疾报告》 107 7.5.8. 赢得乙肝母亲的支持 (WOMB) ___________________________________________ 107 7.5.9. 2010 年至 2021 年间 HIV 感染率下降 46%:NACO _________________________ 107 7.5.10. 2005–2021 年结核病 (TB) 研究资金趋势报告 _________________________________ 108