摘要 神经接口的最新发展使得实时和非侵入性地跟踪运动神经元脉冲活动成为可能。这种新颖的接口可以通过直接从人类神经系统中提取潜在的高维控制信号,为人类运动增强提供有希望的基础。然而,尚不清楚人类能够多灵活地控制单个运动神经元的活动,以有效增加可用于同时协调多个效应器的自由度数量。在这里,我们为人类受试者(N = 7)提供有关支配单个肌肉(胫骨前肌)的运动单元 (MU) 对的放电模式的实时反馈,并鼓励他们通过跟踪二维空间中的目标来独立控制 MU。受试者学习控制策略以针对各种 MU 组合完成目标跟踪任务。这些策略很少对应于神经活动开始时对单个 MU 的独立输入信号的意志控制。相反,MU 激活与 MU 对的共同输入一致,而 MU 对中单个 MU 的激活主要通过改变去募集顺序来实现,这可以通过运动神经元兴奋性的历史依赖性变化来解释。这些结果表明,基于对单个 MU 的独立突触输入的灵活 MU 募集不太可能,尽管去募集可能反映了神经元内在兴奋性的变化或输入或调制。
我们介绍了一种电隔离的“浮动”双层 GaAs 量子阱 (QW) 设计,其中施加可控且高度可重复的大栅极电压会诱导电荷,这些电荷在移除栅极电压后仍被捕获在双层中。在较小的栅极电压下,双层通过厚绝缘屏障与外部电极完全电隔离。这种设计允许完全控制两个耦合的 2D 电子系统的总密度和差分密度。浮动双层设计提供了一种独特的方法来研究无法通过简单的传输测量进行研究的系统。它还提供了测量层间电荷转移的能力,即使 2D 系统的平面电阻率不同。我们测量了 QW 双层的电容和层间隧穿光谱,并独立控制顶层和底层电子密度。我们的测量显示,在 v T ¼ 1 时,层间隧穿电流大大增强,这是强层间关联双层系统激子凝聚的标志。由于各个层的密度完全可调,浮动双层 QW 系统提供了一个多功能平台来获取有关电子双层系统中量子相的先前无法获得的信息。
抽象合成生物学旨在使调节分子和电路的合理设计重新编程细胞行为。这种方法在人类细胞中的应用可能会导致强大的基因和基于细胞的疗法,从而提供了对抗复杂疾病的变革性方法。迄今为止,合成遗传回路在临床上相关的细胞类型及其成分中的实施挑战性,通常会带来翻译不兼容,极大地限制了这种方法的可行性,功效和安全性。在这里,使用临床驱动的设计过程,我们开发了一个可编程合成转录调节器的工具包,这些工具包具有基于紧凑的人蛋白质设计,可以通过FDA批准的小分子来调节精确的基因组正交调节。我们通过遗传程序来设计治疗性人体免疫细胞来证明该工具包,这些程序可以滴定生产免疫疗法,在体内和3D球形模型中对肿瘤杀死的药物控制以及第一个多渠道合成转换免疫治疗基因的独立控制。我们的工作建立了一个强大的平台,用于在哺乳动物细胞中进行自定义基因表达程序,并有可能加速合成系统的临床翻译。
SDN 被定义为一种控制框架,它通过分离数据平面和控制平面来支持网络功能和协议的可编程性,而数据平面和控制平面目前在大多数网络设备中是垂直集成的。SDN 提出了一种逻辑集中式架构,其中控制实体(SDN 控制器)负责通过应用程序编程接口 (API) 提供网络资源的抽象。这种抽象使 SDN 能够执行网络虚拟化,即对物理基础设施进行切片并创建多个共存的网络切片(虚拟网络),独立于底层无线或光学技术和网络协议。理想情况下,SDN 架构基于单个控制域,该控制域由多个网络节点组成,这些节点采用不同供应商提供的不同技术,并通过标准接口进行控制。对于 QKDN 的互通场景,需要多域网络编排,因为每个域可以由不同的供应商提供,每个域都可以通过其自己的客户 SDN 控制器进行独立控制。本建议书提出了 SDN 编排和虚拟化的框架,该框架允许规范化控制,从而允许在抽象级别上组合跨多个域的端到端配置服务。编者注:随着工作的进展,将添加有关两个 QKDN 提供商之间 QKDNS 互通的 SDN 控制概念的进一步描述
投影仪输入和显示之间的传播延迟小于一帧,因此结果是逼真的实时模拟。这对于模拟学员和模拟图像之间的实时交互至关重要。Christie Matrix StIM TM 是真正的游戏规则改变者。它是第一个使用 LED 照明同时和独立控制可见光和近红外光谱的模拟系统。它是一个智能投影系统,可以逐帧实时平衡和优化颜色、亮度和黑色级别。它是第一个使用固态 LED 照明为模拟和训练而设计的系统 - 几乎无需维护,无需消耗品。Christie Matrix StIM 是一个可扩展的环境显示系统,它提供实现人眼极限分辨率的独特功能,同时模拟夜视镜,为夜视镜训练带来革命性的新功能。科视 Matrix StIM 独特的无灯照明系统提供前所未有的稳定性、可靠性和多年的连续运行。该系统由科视专业知识设计和制造,具有超长的使用寿命、质量和易维护性。科视基于固有稳定的长寿命平台构建,不使用偏振滤光片或随时间褪色,提供独特的无灯照明系统,具有前所未有的稳定性和可靠性。科视 Matrix StIM 无需耗材、发热量低、功耗低、完全符合 RoHS 规定并可连续运行多年,是一种几乎无需维护的环保模拟系统。
自愿运动在执行前需要做好准备。人们已在整个中枢神经系统中观察到了准备活动,最近在人类周围神经系统(即肌梭)的一级神经元中也发现了准备活动。感觉器官中出现的变化表明,拉伸反射增益的独立调节可能是运动准备的重要组成部分。本研究的目的是进一步研究人类受试者优势上肢的短延迟拉伸反射反应 (SLR) 和长延迟拉伸反射反应 (LLR) 的准备调节。具体来说,我们研究了不同的目标参数(目标距离和方向)如何影响目标导向伸手的背景下拉伸反射增益的准备调节,以及任何此类调节是否取决于准备持续时间和背景负荷的方向。我们发现目标距离只会产生很小的反射增益变化。相比之下,SLR 和 LLR 增益都根据目标方向受到强烈调节,从而促进即将到来的自愿运动。当准备延迟足够长(> 250 毫秒)且同向肌肉未负重时,这种以目标为导向的 SLR 和 LLR 增益调节会出现或增强 [即,当背景负荷首次施加在同向肌肉动作方向(辅助负荷)时]。结果进一步支持了伸手准备中相对缓慢进化的过程,该过程可能通过独立控制肌腱运动神经元来调节反射性肌肉僵硬。这种控制可以增强自愿的目标导向运动,并在同向肌肉未负重时被触发或增强。
摘要:干细胞,尤其是人IPSC,构成了组织工程的强大工具,尤其是通过球形和器官模型。很好地描述了干细胞对其直接微环境的粘弹性特性的敏感性,但干细胞分化仍然取决于生化因素。我们的目的是研究HIPSC球体直接环境在命运中的粘弹性特性的作用。为了确保仅由机械相互作用驱动细胞生长,可在无分化因子培养基中使用具有显着不同粘弹性特性的可生物固定藻酸盐 - 凝集素水凝胶。开发了不同浓度的藻酸盐 - 凝集素水凝胶,以提供具有显着不同机械性能的3D环境,范围从1到100 kPa,同时允许可打印。通过聚集(= 100 µm,n> 1×10 4)制备来自两个不同细胞系的HIPSC球体,在不同的水凝胶中包括并培养14天。虽然密集水凝胶中的球体表现出有限的生长,而不论配方如何,但用液态液乳液法制备的多孔水凝胶显示出球体形态的显着变化和随着水凝胶机械性能的函数的显着变化。横向培养物(相邻球体含有藻酸盐 - 凝集素水凝胶)清楚地确定了每个水凝胶环境对hipsc球体行为的单独影响。这项研究是第一个证明机械调制的微环境会导致不同的HIPSC球体行为而不会影响其他因素。它允许人们设想多个公式的组合来创建一个复杂的对象,其中HIPSC的命运将由其直接微环境独立控制。
革兰氏阴性细菌的外膜是化学和物理胁迫的障碍。内膜和外膜之间的磷脂转运已是深入研究的领域,在E中。大肠杆菌K-12,最近已证明它是由YHDP,TAMB和YDBH介导的,这些YHDP,TAMB和YDBH建议为phospholipid扩散提供疏水通道,YHDP和TAMB扮演主要角色。但是,YHDP和TAMB具有不同的表型,表明了不同的功能。尚不清楚这些功能是否与磷脂代谢有关。我们研究了由FADR的缺失引起的合成冷敏感,该降解是控制脂肪酸降解和不饱和脂肪酸产生和YHDP的转录调节器,但不是由ΔtambΔfadr或δfadr或δydbhΔfadr。tamb的缺失撤回δyhdpδfadr冷敏感性进一步证明了势类型与这些基因之间的功能多样化有关。δYHDPδFADR菌株在转移到非允许温度时,心脂蛋白的增加增加,而遗传降低的心磷脂水平可以抑制冷敏感性。这些数据还揭示了e中心磷脂合酶之间的质量差异。大肠杆菌,因为CLSA和CLSC的缺失抑制了冷灵敏度,但CLSB的缺失却没有。此外,增加的脂肪酸是对冷敏感性和遗传降低或通过补充油酸降低所必需的,这会抑制δyhdpΔfadr菌株的冷灵敏度。一起,我们的数据清楚地表明,YHDP和TAMB之间功能的多样化与磷脂代谢有关。尽管有可能间接调节效应,但我们赞成YHDP和TAMB具有差异化的磷脂传输偏好的简约假设。因此,我们的数据为基于YHDP和TAMB的丰度或活性的调节而响应变化条件的情况,为内膜和外膜的磷脂组成独立控制提供了潜在的机制。
*gdliu@xtu.edu.cn 摘要:偏振光在通信波段具有多种潜在应用,包括光通信、偏振成像、量子发射和量子通信。然而,优化偏振控制需要在动态可调性、材料和效率等领域不断改进。在本文中,我们提出了一种基于硼墨烯的结构,它能够通过局域表面等离子体(LSP)的相干激发将光通信波段的线性偏振光转换为任意偏振光。此外,可以通过将第二个硼墨烯阵列放置在第一个硼墨烯阵列的顶部并使它们的晶面相对旋转90°来实现双层硼墨烯结构。通过独立控制双层硼墨烯的载流子浓度可以切换反射光的偏振态的旋转方向。最后利用偶极子源实现偏振光的发射,其发射速率比自由空间中的发射速率高两个数量级,并且可以通过操纵载流子浓度来动态控制偏振态。我们的研究简单紧凑,在偏振器、偏振探测器和量子发射器领域具有潜在的应用。1.引言 偏振是电磁波的本征特性之一,它表示电磁矢量在空间中方向改变的性质[1],包括三种偏振态:线偏振光(LPL)、椭圆偏振光(EPL)和圆偏振光(CPL)。在通信和传感领域,与LPL相比,CPL使光能够抵抗环境变化,并且忽略了散射和衍射的影响[2-4]。直接产生CPL比较困难,但可以通过调节两个正交电场分量之间的电磁振幅和相位,将LPL转换成CPL[5]。超材料可以灵活地操控光的散射振幅、相位和偏振,理论上可以将光的波前塑造成任何所需的形状。偏振转换的早期研究表明,由贵金属组成的超材料
对静电定义的半导体量子点进行了深入研究,以进行固态量子计算[1-4]。栅极电极旨在分别控制电化学电位和隧道屏障[5,6]。但是,这些设备参数在非单调方面变化,并且并不总是可以通过应用的门电压来预测,从而使设备调整为复杂且耗时的任务。全自动设备调整对于半导体Qubit电路的可扩展性至关重要。调整静电定义的量子点设备可以分为三个阶段。第一个阶段是超粗调节,它包括设置栅极电压,以创建电子或孔的结合潜力。第二阶段(称为粗调)着重于识别和导航量子点设备的不同操作机制。第三阶段,称为精细调整,涉及优化特定的电荷转换集。最近已经实现了第一个调整阶段的完整自动化[7]。使用卷积神经网络证明了自动粗调调谐,以识别双量子点状态[8]并达到任意电荷状态[9]。模板匹配也用于导航到单电子制度[10]。在此阶段,虚拟栅极电极可用于独立控制每个量子点的电化学电位[11,12]。但是,这些方法仅允许优化从执行的测量值估算并依赖校准的设备参数。vae以前关于自动调节的工作重点是通过系统修改栅极电压来实现两个量子点之间隧道耦合的目标值[13,14]。在这里,我们演示了一种自动化方法,用于同时调整多个设备参数,例如隧道速率和点间隧道耦合,而无需参数化所需的测量功能。我们的方法基于变异自动编码器(VAE)。