这些测试对于调查可能来自食管的症状非常有用。大多数人会先进行内窥镜检查或钡剂 X 射线检查,以查看是否存在炎症或狭窄区域。食管通常会在吞咽时产生波形,将液体和固体推入胃中。有时这无法正常工作,导致各种症状(例如疼痛或吞咽困难)。pH/阻抗测试将指示过度反流是否可能导致您的病情。
多标签多视图动作识别旨在识别来自多个摄像机限制的未修剪视频的多个同时或顺序动作。现有工作集中在狭窄区域中具有强标签的狭窄区域中的多视图动作识别,其中每个动作的发作和偏移都在框架级别标记。这项研究重点介绍了分布摄像机以捕获宽范围区域的现实情况,在视频级别上只能使用弱标签。我们提出了一种名为Multi -Vilew A Ction S选举L(MultiAsl)的方法,该方法通过从不同的观点中选择最有用的信息来利用操作分别学习来增强视图融合。所提出的方法包括多视图时空变压器视频编码器,以从多视频视频中提取空间和时间特征。动作选择学习是在框架级别采用的,使用从视频级别的弱标签获得的伪基真实,以识别最相关的框架以供行动识别。使用MM-Office数据集在现实世界办公室环境中进行了实验,证明了与现有方法相比,该方法的出色性能。
直到最近,用户在何时,多长时间以及可以访问网络的数量方面受到限制。这些“公司”安排要求DNO通过标准连接确保网络中的用户有足够的能力。要在网络的狭窄区域中“加快”连接请求,通常需要进行标准连接的加固,DNO还提供了灵活的连接 - “非公司”或“可降低”网络访问网络,以替代网络付费和/或等待网络加强。但是,可能发生的程度没有限制。
接口 [FS+1]:视野仅限于接口问题,因此涉及的创新努力有限。我们认为接口是功能流(现在是所讨论的系统)与其相应超级系统组件之间发生力、材料和信息交换的狭窄区域。因此,皮托管 + 静态系统的物理组件将形成功能流。一端的接口将是数据来源的飞机外表面上的皮托管。另一个接口将是驾驶舱仪表上处理后数据的视觉显示。第二个接口还将包括向数字飞行计算机输入数据。
摘要:抗体已经改变了生物医学研究,目前正用于不同的实验应用。通常,酶与其特异性抗体的相互作用会导致其酶活性降低。抗体的作用取决于其狭窄区域,即它所针对的酶区域。这种抑制的机制很少是抗体与催化位点的直接结合,而是由于空间位阻,阻止底物进入活性位点。然而,在几个系统中,与抗体的相互作用会引起酶的构象变化,从而抑制或增强其催化活性。因此,酶抑制或增强的程度反映了酶分子上各种抗原决定簇的性质和分布。目前,许多酶的作用方式已在分子水平上得到阐明。我们在此回顾抗体抑制酶催化活性的分子机制和最新趋势,并提供特异性抗体如何用于中和生物活性分子的例子
随着栅极信号的施加,栅极电流开始从栅极流向阴极。栅极电流在阴极表面的电流密度分布不均匀。栅极附近的电流密度分布要高得多。随着与栅极距离的增加,密度会降低。因此,阳极电流在栅极附近的狭窄区域中流动,栅极电流密度最高。从上升时间开始,阳极电流开始自行扩散。阳极电流以 0.1 毫米/秒的速率扩散。扩散阳极电流需要一些时间,如果上升时间不够,则阳极电流无法扩散到整个阴极区域。现在施加了较大的阳极电流,并且也有较大的阳极电流流过 SCR。因此,开启损耗很高。由于这些损耗发生在一小块导电区域,因此可能形成局部热点,并可能损坏设备。
摘要在包含物和不同材料的基质组成的复合材料中,一些包含物彼此紧密地位于彼此之间。如果夹杂物的材料特性与基质的材料特性高,则场浓度发生在紧密的夹杂物之间的狭窄区域中。在复合材料和成像理论中,定量地理解场浓度是重要的,因为它代表了压力或场的增强。过去30年左右,在分析这种野外浓度方面的情况下取得了重大进展:最佳估计和渐近表征限制了场浓度,在电导率方程(或抗层弹性),线性弹性系统和Stokes系统的情况下得出了现场浓度。本文的目的是以连贯的方式审查其中的一些。
工作内容:建筑规划审查员在一般监督下,执行负责任的监督工作或困难且负责任的工作,包括结构和建筑设备系统的工程或建筑分析,以及审查纽约市建筑和设备系统的建造、改建或修理计划,以执行建筑部管辖范围内的法规和规定。他们完成报告并解释建筑法规、规则和分区规定;在需要时,对建筑物进行现场检查并就调查结果提出建议和报告。所有建筑规划审查员都执行相关工作。建筑规划审查员执行的一些体力活动和进行现场检查时遇到的环境条件包括:往返检查现场;爬上和爬下梯子或楼梯以到达要检查的区域;站在脚手架上检查工作;长时间站立;检查期间弯腰;在狭窄区域工作;区分颜色;戴安全帽;攀爬各种物体周围和上方;在潮湿、黑暗、烟雾弥漫或刺鼻的环境中行走,并在各种天气条件下在户外工作。(这是对您在此职位上可能做的工作的简要描述,并不包括此职位的所有职责。)
穿透金属装甲的射弹会使材料处于复杂的应力状态,从而导致装甲失效。金属装甲可能发生多种类型的失效(Backman 和 Godsmith,1978 年),但许多研究都集中于剪切塞失效机制,这是导致装甲钢的抗弹性能降低的原因。剪切塞被归类为低能量失效,通常由钝头射弹或钝碎片的撞击引起(Cimpoeru,2016 年)。对装甲钢目标进行的许多微观结构观察表明目标内部存在绝热剪切带(Solberg 等人,2007 年)。通常,如果存在高应变率载荷下局部塑性变形的有利条件,则可能发生绝热剪切。当冲击引起的变形发生得如此之快,以致热软化超过目标材料的加工和应变速率硬化时,变形将局限于强烈剪切的狭窄区域,即绝热剪切带 (ASB)。根据研究 (Guo et al ., 2020),ASB 的形成步骤如下:应力崩塌、应变局部化、温度升高、剪切带起始和裂纹形成。给定材料中存在 ASB 的必要条件是发生热机械不稳定性,表现为塑性流动应力随变形值的增加而降低。
1 执行摘要 在路面可以行走时立即测量路面轮廓的主要原因是可以立即纠正铺装操作。何时进行补救并不重要。重要的是停止导致平整度问题的任何事情。FAA 咨询通告 (AC 150/5370-10B)《机场建设规范标准》中包括的 P-501 项“波特兰水泥混凝土路面”,称为“P-501”规范,要求使用 16 英尺直尺评估新混凝土路面的平整度。满足 P-501 中的标准后,机场路面将变得平整。但是,使用物理直尺是一个人力密集型过程。因此,实践已经发展到通常使用加州剖面仪来评估机场路面。另外,自动路面剖面仪提供了 16 英尺直尺的模拟,这使得它们在实施 P-501 的平滑度组件时从效率和易用性的角度来看具有吸引力。作为本研究的一部分,对不同类型的路面剖面仪进行了测试,以确定在使用它们代替 P-501 中规定的 16 英尺直尺时的准确性和可靠性。剖面仪的类型包括静态和滚动倾角仪、轻型惯性剖面仪、干湿剖面仪和外部参考剖面仪。经过正确校准和操作后,发现所有测试的设备都能够评估机场路面的平滑度。但是,每种类型都有优点和局限性,其中一些是重要的。加州剖面仪未包含在本次评估中,仅用于相对比较。测量在不同波长下的放大和衰减是该设备的一个潜在问题。此外,剖面仪根据偏离中心的偏差测量平滑度。P-501 中的标准是沿 16 英尺直尺长度测量的偏差。轻型剖面仪速度快、准确,通常可同时测量两条测量线。它们需要空间来加速到最佳速度,然后需要空间来减速,因此在狭窄区域中的使用受到限制。轻型剖面仪无法测量相对于平均海平面 (MSL) 的真实剖面,也无法测量横坡或局部凹陷区域(鸟池)。它们比静态测斜仪快得多。结果表明,使用更大占地面积的轻型剖面仪可以补偿路面纹理,因此更准确地匹配本研究中使用的参考剖面仪。静态倾角仪足够准确,可以测量相对于平均海平面的真实剖面,但它们也非常慢。滚动倾角仪也足够准确,可以测量相对于平均海平面的真实剖面。