摘要:2019年7月,一种疫苗衍生的重组猪生殖和呼吸综合征病毒1菌株(PRRSV-1)(Horsens菌株)感染了40多个丹麦母猪牛群,导致严重损失。在本研究中,评估了重组骑马菌株的致病性,并使用年轻的SPF猪中的特征良好的实验模型与参考PRRSV-1菌株进行了比较。此外,评估了三种不同的PRRSV-1 MLV疫苗的效率,以保护猪免受重组菌株的挑战。在挑战之后,与所有其他组相比,未接种疫苗的猪在血清中挑战了血清的病毒载量显着增加。在尸检时未观察到宏观变化,但是几乎所有猪的肺和扁桃体的组织都是PRRSV阳性的。与受到霍斯斯菌株挑战的未接种群体相比,所有接种疫苗的组中血清中的病毒负荷均低,并且在接种疫苗的组中只有很小的差异。本研究中的发现以及最近的另外两份报告表明,这种重组的“霍斯”菌株确实能够诱导成长中的猪以及与典型的PRRSV-1,Subtype 1菌株相当甚至超过的怀孕母猪的感染。然而,缺乏明显的临床体征和缺乏显着的宏观变化表明,这种菌株比以前表征的高毒性PRRSV-1菌株的毒力不那么毒。
靶向核酸酶等高精度基因组编辑工具的发展加速了人类基础医学、动物科学、动物育种以及疾病诊断等领域的进步(Doudna and Charpentier,2014;Kurtz 等,2021;Rieblinger 等,2021;Xie 等,2021)。尤其是被称为 CRISPR 技术的基因组编辑系统自首次报道以来发展迅速(Jinek 等,2012),成为最热门的技术之一。CRISPR/Cas9 技术可精准识别靶序列并实现高效的 DNA 切割,从而完成全基因组范围的基因敲除/敲入(Cong 等,2013;Koike-Yusa 等,2014)。但由于编辑过程中会发生双链断裂(DSB),该技术往往会引入大量不理想的InDel(插入和缺失)突变(Zhao et al.,2019)。随后,人们开发了碱基编辑器(BE),可以利用胞嘧啶脱氨酶或腺苷脱氨酶实现单核苷酸的精准编辑,而不会诱导DSB(Gaudelli et al.,2017;Rees and Liu,2018)。近来,引物编辑器(PE)进一步扩展了基于CRISPR的编辑工具包,可实现所有12种可能的碱基转换和短DNA片段的插入和缺失。该技术融合逆转录酶和Cas9蛋白,以引物编辑向导RNA(pegRNA)为修复模板,实现精准的基因编辑(Anzalone et al.,2019)。在这篇小型评论中,我们总结并讨论了 CRISPR 技术在猪中的最新应用。
摘要:基于自然减弱或转基因病毒的非洲猪发烧病毒(ASFV)的候选疫苗有可能产生保护性免疫反应,尽管在定义针对ASFV的保护性免疫反应方面尚无共识。研究,尤其是在明智的宿主物种中,专注于揭示保护机制的研究将有助于开发更安全,更有效的疫苗。本研究对表型和功能数据进行了详细的分析,这些数据对细胞内免疫感引起的细胞反应以及随后使用自然减弱的现场菌株LV17/WB/RIE1的自然减弱的家养猪的促进,以及对抗激内挑战的机制以及对抗激发攻击的机制,以抗抗性的II型II II II Armenia/07 Learteria。在免疫后观察到的血清中IL-8和IL-10的瞬态轻度至中度增加可能与存活直接相关。保护也与强大的ASFV特异性多功能记忆T细胞反应有关,其中CD4CD8和CD8 T细胞被鉴定为病毒特异性IFNγ和TNFα的主要细胞来源。与细胞因子反应并行,这些T细胞亚群还显示出特异性的细胞毒性活性,这是CD107A脱粒标记的表达增加所证明的。与病毒 - 特异性多功能CD4CD8和CD8 T反应一起,在免疫猪中挑战后观察到的抗原经历的细胞毒性CD4 T细胞的水平增加也可能通过杀死靶向感染抗原抗原细胞的机制来导致对控制的有毒感染。未来的研究应阐明本研究中是否证明了记忆T细胞反应是否持续存在,并为进一步的ASFV感染提供了长期保护。
随着生活水平的提高,慢性病和终末期器官衰竭已成为人类的常见现象。器官移植成为对抗慢性病和终末期器官衰竭的希望之一。然而,可供移植的器官远远不能满足需求,导致严重的器官短缺危机。为了解决这个问题,研究人员将猪作为研究对象,因为猪作为异种移植供体具有许多优势。猪被认为是人类异种移植的理想器官供体,但将猪器官直接移植给人面临许多障碍,例如超急性排斥反应、急性体液异种移植排斥反应、凝血失调、炎症反应、凝血失调和内源性猪逆转录病毒感染。已经开发出许多转基因策略来克服这些障碍。本综述概述了用于异种移植的转基因猪的最新进展。未来基于基因工程为异种移植提供安全有效的器官和组织仍然是我们的目标。
肾异种移植最近在克服其在人类中使用的障碍方面取得了长足的进步。由于使用了临床前猪对顶峰的模型,因此已经实现了这种进步。总体而言,肾异种移植长期以来与猪心(主要是由于其寿命维持性质)的生存率较低。然而,使用最新的遗传修饰猪供体菌株,加上控制抗孢子免疫反应和凝结的进展,现已实现了长达2年的生存。尽管长期以来一直认为猪对顶峰的组合被认为是对人类状况的完美反映,但它有几个局限性,尤其是在不同的天然抗孢子抗体方面。这一事实与被认为是先决条件的生存延长有关,导致一些开创性的团队越过人类应用。然而,在人类中的使用将保持轶事,并且在不使用非人类灵长类动物的情况下,将很难实现肾脏异种移植的进一步进展,而非人类灵长类动物将保持互补,尤其是在从未在人类中从未测试过的重大创新。
表1:衍生自正常人支气管上皮的BEAS2B细胞被设计为表达HER2 YVMA,HER2 S310F或HER2 L755。PHER2信号,以建模人血浆蛋白结合对复合效力的衰减作用,以提供更临床相关的环境。PEGFR和PHER2 IC 50值通过alphalisa®,比色ELISA或细胞西部确定。细胞毒性IC 50值是通过复合处理后通过细胞滴度GLO®确定的3-5天。所有IC 50值都是[NM],代表来自多个实验的平均值。肝细胞稳定性,GSH(谷胱甘肽)反应性和动力溶解度测定代表了我们ADME(吸收,分布,代谢和排泄)筛选的子集。
修复咨询委员会会议日期:2024 年 10 月 2 日,星期三时间:下午 6:00 - 晚上 8:00 地点:仅通过互联网进行虚拟访问:https://tinyurl.com/NASBOCT24RAB 会议 ID:254 668 103 758 密码(区分大小写):VAvfxr 电话:+1 877-286-5733 电话会议代码:629 543 152# 海军设施工程系统司令部基地调整和关闭计划管理办公室 (NAVFAC BRAC PMO) 宣布召开前海军航空站布伦瑞克 (NASB) 修复咨询委员会 (RAB) 会议。会议将仅以虚拟形式举行,可通过上面提供的 Teams 会议链接访问。海军将提供正在进行的活动的更新或状态审查,包括全氟和多氟烷基物质相关活动、长期监测、沉积物和地下水修复相关活动、土地使用控制、财产转让和社区外展工作。会议材料将在线提供,网址为 https://www.bracpmo.navy.mil/BRAC-Bases/Northeast/Former-Naval-Air-Station- Brunswick/Meeting-Material/ 。如有疑问或需要更多信息,请联系 BRAC PMO 东部环境协调员:W. Rachelle Knight 女士,BRAC 环境协调员,BRAC PMO 东部,4911 South Broad Street,Building 679,Philadelphia,PA 19112,电话 (215) 897-4916 或电子邮件 wynette.r.knight.civ@us.navy.mil。
