猪通常在3至4周时从母猪断奶,但在某些情况下为6至8周。预防疾病前死亡的第一原因是母猪躺在猪上。称为母体覆盖,覆盖或压碎,这占死亡人数的48.1%。其他主要原因的主要原因包括饥饿(死亡人数的15.3%)和冲突(死亡人数的13.3%)(Lay等人。2002)。 在SOW唱片卡上,牧民经常将覆盖,饥饿或冲突列为死亡原因。 然而,猪前的死亡通常是由于环境,母猪和猪本身之间的一系列相关事件和相互作用而发生的。 确实,覆盖层会导致猪死亡人数最多,但几个相关因素会导致这种结果。 例如,寒冷而饥饿的猪会挤在母猪附近,并面临更大的覆盖风险。 图1. 显示了环境,母猪和猪导致前期死亡的可能相互作用。2002)。在SOW唱片卡上,牧民经常将覆盖,饥饿或冲突列为死亡原因。然而,猪前的死亡通常是由于环境,母猪和猪本身之间的一系列相关事件和相互作用而发生的。确实,覆盖层会导致猪死亡人数最多,但几个相关因素会导致这种结果。例如,寒冷而饥饿的猪会挤在母猪附近,并面临更大的覆盖风险。图1.
摘要:这项研究评估了从肉鸡中从猪废水中提取的磷酸盐的磷利用率。确定磷无机污染物。之后,用2,520个肉鸡进行了一个实验,分为随机块,9种处理(0、0.5、1.0、1.5和2.0g/kg P,从猪废水中提取的磷酸盐和0.5、1.0、1.5、1.5和2.0g/kg p从磷酸盐中提取的磷酸盐中提取,并从磷酸dicalcium dicalcium Perifitions和28鸟类均可进行。动物的年龄从1到14天大,这些年龄在盒子里放置并随意喂食(水和饲料)。在14天后,每个实验单元的3只鸟被屠宰以评估胫骨破裂的强度。数据已提交方差和回归分析。磷从商业来源的生物学可用性是通过回归系数的比率计算的,考虑到磷酸二氨基二磷酸的磷作为100%可用。无机污染物表明,从猪废水中提取的磷酸盐浓度相对于磷酸二氨基二硫酸二硫酸二硫酸二核,或浓度水平较低。对于简单线性方程式观察到32.53%的磷的可用性,对于多线性方程,观察到32.53%。来自猪废水的磷酸盐优势反映在环境问题上,即没有污染(无机金属),而在环境中置于的含量较少。这项研究的结果表明没有病原体(沙门氏菌和大肠杆菌)在从肉体中施用的猪废水中提取的磷酸盐中,磷平均可利用率为31%。关键词:污染物,猪废水,磷的可用性,磷酸盐,环境。
Cre/loxP 系统是生成具有精确空间和时间基因表达的动物模型的强大工具。事实证明,它在生成具有组织特异性表达致癌基因或失活肿瘤抑制基因的癌症模型中是必不可少的。因此,Cre 转基因小鼠已成为基础癌症研究的基本先决条件。虽然猪不太可能在基础研究中取代小鼠,但它们已经为转化研究提供了强大的补充资源。但是,尽管已经生成了有条件靶向的致癌猪,但任何主要人类癌症都不存在 Cre 驱动系。为了在猪中模拟人类胰腺癌,通过 CRISPR/Cas9 介导将密码子改良的 Cre (iCre) 插入猪 PTF1A 基因来生成 Cre 驱动系,从而保证了组织和细胞类型特异性功能,这已使用双荧光报告猪得到证实。所用方法可轻松用于生成其他猪 Cre 驱动系,为在大型动物中模拟人类癌症提供缺失的工具。
摘要:过去几十年来,基因工程的进步使得开发出生产转基因动物的方法成为可能。转基因技术的发展为研究开辟了新的方向,也为其实际应用创造了可能性。生产转基因动物物种不仅旨在加速传统的育种计划,改善动物健康和食用动物产品质量,还可用于生物医学。动物研究旨在开发用于基因功能和调控研究以及某些人类疾病的遗传决定因素的模型。本综述中描述的另一个研究方向侧重于使用转基因动物作为高质量生物制药(如重组蛋白)的来源。讨论的另一个方面是使用转基因动物作为细胞、组织和器官的来源,以移植到人类受体中,即异种移植。许多研究表明,猪(Sus scrofa domestica)是最适合作为人类疾病研究模型和异种移植的最佳器官供体的物种。与其他牲畜相比,转基因猪的怀孕期短、世代间隔短和产仔数高使得转基因猪的生产耗时更少。本综述介绍了用于生物医学研究的转基因猪以及猪动物模型使用的未来挑战和前景。
1 米兰大学临床药理学和毒理学研究生院医学生物技术和转化医学系,意大利米兰 20122; gianluca.gazzaniga@unimi.it (GG); stefano.colla@unimi.it (SC); stefano.donghia@unimi.it (SD); giusy.disanza@unimi.it(GDS); giulia.fornasier@unimi.it (GF); michele.gringeri@unimi.it(MG); mariavictoria.lucatelli@unimi.it(MVL); giulia.mosini@unimi.it (GM) 2 米兰大学肿瘤学和血液肿瘤学系,意大利米兰 20122; federica.villa@ospedaleniguarda.it (FV); elio.pizzutilo@unimi.it(埃及); arianna.pani@ospedaleniguarda.it(美联社) salvatore.siena@unimi.it(SS); francesco.scaglione@unimi.it (FS)3 尼瓜尔达癌症中心,尼瓜尔达大都会医院,意大利米兰 20162; federica.tosi@ospedaleniguarda.it 4 意大利米兰大医院化学临床和微生物分析部,20162 米兰,意大利 * 通讯地址:andrea.sartorebianchi@unimi.it;电话:+39-0264442291 † 这些作者对这项工作做出了同等贡献。 ‡ 这些作者对这项工作做出了同等贡献。
Affiliations: 1 Department of Medicine, Division of Digestive Diseases, Emory University 2 Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University 3 Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 4 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 5 Lead contact: agracz@emory.edu * these authors contributed equally对于手稿,作者没有宣布利益冲突作者贡献:JL,AG和ADG对实验进行了想法和设计。JL,AG,FT,SW,TH和ADG进行了实验。nb设计和生成的LGR5-2A-DTR等位基因。JL,AG和ADG编写并编辑了手稿。致谢作者感谢Gracz Lab的成员对手稿的有益对话和批判性审查。这项工作由NIH R35GM142503(GRACZ)和R35GM142503-01S1(GRACZ)资助。这项工作得到了埃默里小鼠转基因和基因靶向核心(TMF)的部分支持,该核心由国家推进NIH的转化科学中心提供了额外的支持(UL1TR000454)。
分析(图2)。,我们首先观察到器官的腔侧的一个大腔,这与肠腔相似。然后,我们在某些上皮细胞(蓝色虚线区域)上观察到具有隐窝结构和微绒毛的极化上皮细胞,这种特征通常是
粘液在胃肠道(GI)区中起着关键作用,是宿主防御系统的组成部分,并为与居民微生物组建立了共生关系的序幕。粘液是一种类似凝胶的物质,沿着肠道的上皮衬里形成保护性屏障,是针对病原体和环境侮辱的第一道防线(图1)。1,2肠粘液代表了一个复杂的生物环境,由杯状细胞分泌的粘蛋白与肠肠上皮细胞分泌的抗菌肽/蛋白质混合在一起,并泛滥到肠道隐窝底部。3,4粘蛋白是大型糖蛋白,在粘液中形成聚合物网格,为该保护层提供粘弹性和结构。5超出其物理屏障功能,粘蛋白聚糖还可以作为微生物的营养来源,从而促进了有助于肠道稳态的共生细菌的生长。6此外,粘蛋白是影响宿主对微生物定植的反应的免疫调节剂,并有助于维持平衡和耐受的免疫环境。3粘液,粘蛋白和肠道微生物组之间的复杂相互作用突出了它们在保留肠道健康方面的集体意义,并强调了在与营养不良和胃肠道疾病有关的情况下,了解这些动态相互作用对治疗干预措施的重要性。结肠粘液被组织为由密集的内部和松散的外层组成的功能性双层。这些层的完整性或组成中的破坏内部粘液层与上皮细胞相邻,用作防止微生物与宿主上皮之间直接接触的物理屏障。由紧密堆积的高糖基化的粘蛋白蛋白组成,该层充当物理网状,可防止病原体的扩散,但可以使营养物质渗透到上皮细胞上。较少密度和更渗透的外粘液层会产生富含营养的栖息地,从而促进有益微生物的定殖和生长。,这些粘液层协调了一个精心调整的空间布置,不仅可以保护宿主免受有害病原体的侵害,而且还可以培养一个多样化稳定的微生物群落。