用于对 3 周龄或以上的健康易感猪进行疫苗接种,有助于预防淋巴组织衰竭、炎症和淋巴组织定植,并有助于降低与猪圆环病毒 2 型 (PCV2) 相关的病毒血症程度。疫苗接种后两周即可产生保护作用。免疫持续时间至少为四个月。
摘要猪养殖是一个重要的行业,需要采取积极的措施来进行早期疾病检测和压碎症状监测,以确保最佳的猪健康和安全。这篇评论探讨了用于猪场的猪病和小猪症状症状监测的高级热传感技术和基于计算机视觉的热成像技术。红外热仪(IRT)是一种无创和有效的技术,用于测量猪体的渗透,提供了诸如非破坏性,长距离和高敏感性测量等优势。与传统方法不同,IRT提供了一种快速而节省劳动的方法来获取受环境温度影响的生理数据,对于了解猪体生理和代谢至关重要。IRT帮助早期疾病检测,呼吸健康监测和评估疫苗接种效果。 挑战包括影响测量精度的身体表面发射率变化。 热成像和深度学习算法用于猪行为识别,背面有效地检测背侧平面。 通过热成像,深度学习和可穿戴设备进行远程健康监测促进了对猪健康的非侵入性评估,从而最大程度地减少了用药的使用。 高级传感器,热成像和深度学习的倾斜度显示出疾病检测和猪养殖的改善的潜力,但是必须解决成功实施的挑战和道德考虑。 它还讨论了IRT技术的好处和局限性,并提供了当前研究领域的概述。 本研究IRT帮助早期疾病检测,呼吸健康监测和评估疫苗接种效果。挑战包括影响测量精度的身体表面发射率变化。热成像和深度学习算法用于猪行为识别,背面有效地检测背侧平面。通过热成像,深度学习和可穿戴设备进行远程健康监测促进了对猪健康的非侵入性评估,从而最大程度地减少了用药的使用。倾斜度显示出疾病检测和猪养殖的改善的潜力,但是必须解决成功实施的挑战和道德考虑。它还讨论了IRT技术的好处和局限性,并提供了当前研究领域的概述。本研究本评论总结了猪养殖行业中使用的最先进的技术病因,包括计算机视觉算法,例如对象检测,图像细分和深度学习技术。
“在我们的研究中,我们要求专家评估一系列数百张图像,但我们重复了一些图像,以查看专家是否每次都会以相同的方式评分。”“我们了解到的是,人类评估者与个人非常一致 - 彼此相关,评估人员经常不同意,但是同一评估者很可能以相同的方式评分重复图像。
早期的肠道微生物群组成对仔猪的健康至关重要,影响了长期的微生物组发育和免疫力。在这项研究中,将肠道大坝的肠道菌群与三个生长阶段的三个芬兰猪农场中的后代进行了比较。在出生时(初始暴露阶段),断奶(过渡阶段)和屠宰(稳定阶段)分析了三个研究开发组(良好,良好,良好和过早)粪便菌群的差异。大坝乳杆菌科的舞蹈比出生时低于小猪。limosilactobacillus reuteri和氨基杆菌在大坝及其后代中主要表达。在初始暴露阶段,用乳杆菌科确定了17头仔猪(68%),在发育组之间不均匀地划分:85%的良好,37.5%的差,占早产猪的75%。开发组的良好是微生物多样性最高的,而开发小组的多样性最低。断奶后,小猪中乳杆菌科的丰度和多功能性减少,向大坝的微生物组转移。总而言之,尽管开发组和饲养环境,猪的粪便微生物群仍倾向于向类似的α和β多样性发展。
非转基因的大豆餐的价格高于基于转基因的大豆餐,它们之间的价格差异约为30%。由于转基因生物(转基因生物)技术,培养区域较少的作物产量和其他成本因素(如栽培过程中的用水量)也被最小化。GMO大豆餐主要在美国,阿根廷和巴西生产。这3个国家构成了95%的GMO大豆餐,而非转基因大豆餐主要在非洲地区生产。目前,非转基因大豆餐正在进口到巴基斯坦。进口商还确认,阿富汗和伊朗不是大豆餐的生产者,他们对国际市场价值的确定没有影响。此外,他们还从其他国家进口大豆餐。进口商还向当前的大豆餐(非GMO)简要介绍了其数字,从520 us $/mt到600 us $/mt。他们进一步补充说,来自非洲地区的大豆餐(非转基因)的习俗价值应约为500美元/吨,对于所有进口商来说都是可行的,并且应根据蛋白质含量和作物产量等提供海关价值观。进口商还要求考虑其他因素,例如作物产量分析,需求/供应和蛋白质含量变化,同时确定大豆餐的习俗价值。进口商告知,国际市场上大豆餐的价格经常变化;因此,每当这些价格发生重大变化时,都应修改这些价值。此外,他们告知,由于限制了巴基斯坦的转基因大豆餐的进口,非转基因大豆餐的价格很高,只要去除此类限制,No-GMO的价格也会下跌。
哺乳动物胎生发育需要胎盘作为胎儿和母体子宫之间的中间界面而进化。除了保留胎儿和分泌营养物质以支持生长发育到足月之外,胎生物种还必须改变或抑制母体免疫系统识别半同种异体胎儿。囊胚从透明带孵化后,滋养层细胞分化为母体子宫内膜提供初始通讯,以调节黄体孕酮的产生以及子宫和妊娠建立和维持所必需的胚胎发育中的生物途径。许多胚胎因子已被提出用于建立和维持妊娠。CRISPR-Cas9 基因编辑技术提供了一种特定且有效的方法来生成动物模型以进行功能丧失研究,以研究特定胚胎因子的作用。 CRISPR-Cas9 基因编辑的使用为研究妊娠因子在猪妊娠发育和建立中的具体作用提供了一种直接的方法。这项技术有助于解决许多有关植入期发育的问题,并改变了我们对猪母体识别和维持妊娠的理解。生殖 (2021) 161 R79–R88
抽象的支原体溶质膜是猪中enzootic肺炎的主要药物。尽管细胞介导的免疫性(CMI)可能在防御hyopneumoniae的保护中发挥作用,但其从母猪转移到后代的特征很差。因此,在疫苗接种和未接种疫苗的母猪中研究了母体衍生的CMI。还研究了摄入初乳之前的交叉促进对CMI从大坝转移到小猪的转移的潜在影响。六二肠疾病中的hyopneumoniae接种了被人体感染的牛群和47头仔猪,其中24个小猪被交叉寄养,以及三只非疫苗的对照母猪,来自M. hiopneumoniae M. hyopneumoniae-free Herd-free Herd seal-free Herd和24个小猪。疫苗接种的母猪在肌内肌肉内接受了商业细菌,并在for染前6周和3周接受。使用召回测定法评估了不同T细胞子集的TNF-α,IFN-γ和IL-17A的产生。在母猪血液中的细胞因子产生T细胞增加。同样,在这些疫苗接种的母猪中出生的2天大的小猪的血液中检测到了脑性的 - 特异性T细胞。相比之下,在对照母猪的仔猪血液中没有发现脑性的 - 特异性细胞因子产生T细胞。在交叉派生和非交叉式仔猪之间的透明杆菌特异性CMI中没有发现差异。总而言之,不同的Hyopneumoniae M.特异性T细胞子组从母猪转移到后代。需要进一步的研究来研究这些跨性别细胞对小猪中免疫反应的作用及其对透明杆菌感染的潜在保护作用。关键词:支原体溶液,母体免疫,细胞介导的免疫,交叉促进
SAN 功能障碍可能导致复杂且致命的心律失常 [11, 12],从而导致心房颤动和心力衰竭等心脏疾病,常导致晕厥和心源性猝死 [13, 14]。SAN 功能障碍的特征性体征包括持续性心动过缓、短暂或持续性窦性停搏以及心动过缓-心动过速综合征 [15, 16],可在人类心肌梗死 (MI) 急性期观察到 [17, 18]。 SAN 中的胶原网络可以为节点细胞、血管、神经纤维和其他类型的支持细胞提供结构支撑,从而稳定地连接节点的所有组成部分。这种胶原还可以为起搏细胞提供机械保护,防止周围心肌收缩引起的过度拉伸 [19]。健康人类 SAN 由 35%–55%
对心血管系统疾病的研究越来越多地在动物模型中进行。猪是生物医学研究中常见的模型动物。本研究的目的是确定雄性和雌性猪(Sus scrofa domestica)心脏的正常超声心动图值。本研究使用的猪为本研究中使用的猪12头,年龄为3至4个月,平均体重为55公斤(52至69公斤)。使用频率为 2.5-6.0 MHz 的相控阵探头换能器对麻醉状态下的猪进行右胸骨旁 (RPS) 长轴 (LAx) 和短轴 (SAx) 位置的经胸超声心动图检查。 RPS-SAx 位置旨在评估猪心脏左心室的形状和结构,而 RPS-LAx 位置旨在比较心室之间的尺寸并观察心脏二尖瓣的运动。超声心动图检查结果显示,可以看到猪左心室的结构有室间隔(IVS)、左心室(LV)、左心室壁(LVW)、心包(P)、乳头肌(PM)、右心室(RV)。研究结果显示,心率(HR)、舒张末期左室内径(LVIDd)、每搏输出量(SV)参数的数值在男性和女性之间表现出显著不同的结果,而其他参数的结果不显著。这些猪的正常心脏超声值可以作为以猪为动物模型进行进一步心血管研究的参考。
哺乳动物胎生发育需要胎盘作为胎儿和母体子宫之间的中间界面而进化。除了保留胎儿和分泌营养物质以支持生长发育到足月之外,胎生物种还必须改变或抑制母体免疫系统识别半同种异体胎儿。囊胚从透明带孵化后,滋养层细胞分化为母体子宫内膜提供初始通讯,以调节黄体孕酮的产生以及子宫和妊娠建立和维持所必需的胚胎发育中的生物途径。许多胚胎因子已被提出用于建立和维持妊娠。CRISPR-Cas9 基因编辑技术提供了一种特定且有效的方法来生成动物模型以进行功能丧失研究,以研究特定胚胎因子的作用。 CRISPR-Cas9 基因编辑的使用为研究妊娠因子在猪妊娠发育和建立中的具体作用提供了一种直接的方法。这项技术有助于解决许多有关植入期发育的问题,并改变了我们对猪母体识别和维持妊娠的理解。生殖 (2021) 161 R79–R88