可再生能源和微电网的指数升高带来了通过使用储能系统来确保低渗透网格中频率稳定性的挑战。本文回顾了交流电源系统的频率响应,突出了其不同的时间尺度和控制动作。此外,它指出了依靠同步机和低惯性系统的高惯性互连系统之间的主要区别,这些系统具有转换器相互交流的高渗透率。基于这些概念并采用一组假设,它得出了代数方程,以评估提供惯性和主要控制的能源存储系统。方程与储能技术无关,对系统非线性的鲁棒性,并依赖于通常由系统运营商,行业标准或网络代码定义的参数。使用这些结果,作者提供了一个逐步的过程,以大小转换器交换器交换器混合储能系统的主要组件。最后,北海的风能石油和天然气平台的案例研究以数值示例证明了建议的方法1)可以在实际问题中应用于实际问题和2)2)允许系统设计人员根据提供的频率控制类型来利用不同的技术并为每个存储设备和转换器设置特定要求。
摘要 本文介绍了 BESS 运行对高压输电网的影响。本文主要考虑了有功功率与频率之间的关系问题。检查了 BESS 如何影响一次频率调节过程。对三种频率调节器进行了建模,它们是整个储能调节系统的一部分。实施了“下垂”型和 PI 调节器模型。此外,由于通过电力电子转换器连接到网络的电源份额增加,从而导致系统惯性减小,因此决定研究虚拟惯性对系统频率响应的影响。为此,对将虚拟惯性引入系统的 PWM 转换器控制系统进行了建模。
摘要:近年来,电池能量存储(BES)在微电网系统中引起了很多关注。这是因为BES能够在需要时存储多余的功率并发电。在岛的微电网系统中,BES开始被视为可以调节系统频率的单位。BES中使用的控件显示频率调节性能称为负载频率控制(LFC)。但是,这种参与导致电池的大尺寸和高扩展计划成本。在本文中,提出了与传统LFC相比具有频率限制的高级LFC控制。所提出的控制意味着下垂控制作为基础,并具有频率限制。与传统的LFC相比,拟议的控制可以降低系统扩展计划成本。进行了性能模拟以验证电池性能。数值模拟的结果表明,所提出的对照参与降低操作成本。直接导致扩展计划成本降低。进行了一项针对电池选择的研究,以绘制BES大小解决方案的实用性。
以前,已经使用专用仪器分析了频率响应,但是新一代示波器现在可以测量电源的控制环响应。该分析称为Hendrick Wade Bode之后的Bode(Bode)图。 传统上,该分析使用FFT算法来测量在特定频率范围内系统的增益和相位。诸如4/5/6系列MSO之类的较新示波器具有所有通道上专用的数字下调器,它们独立于时域样本率和记录长度设置。通过称其为频谱视图,该功能与传统的FFT区别开来,在频率响应分析中提供了出色的结果。这份白皮书使用传统的FFT和频谱视图来比较两个不同DUTS(测量设备)的bode图(控制环响应)。
我们认识到采取实际需要的行动需要改善NEM中当前的系统频率控制框架,并同意AEMC和AEMO位置,即近年来系统频率一直在恶化。同时,自2017年引入Hornsdale Power储备以来,电池存储已被证明在管理频率稳定性和恢复方面特别有价值 - 在南澳大利亚州的岛屿电力系统中提供了优质的应急和监管频率服务,在南澳大利亚州的岛屿电力系统中 - 在那里,网格尺度的电池由Aemo控制,以支持广泛的风暴范围内的网格稳定性,并出现了超级风暴,并出现了临时,并出现了意外。特斯拉建议立即采取步骤来奖励这种高级法规响应,并在正在进行的频率改革之前。作为下一步,应在紧迫的情况下进行FFR,并将视线发展为2021/22实施。向前迈进,在各个尺度上进行存储 - 传输,分布和仪表后面 - 在各种形式的范围内 - 独立,共同的和汇总 - 将成为澳大利亚能量组合的越来越重要的组成部分,提供了所有基本服务。因此,至关重要的是,任何频率改革都不直接或无意中拒绝将来的存储项目的吸收,或者沿着极大的实施时间范围进行。
高温电子技术发展迅速,广泛应用于发动机控制、能源勘探和工业过程控制。除了 150°C 以上硅基微电子设计和构造方面的挑战外,石英晶体振荡器还带来了一系列独特的设计复杂性。传统石英振荡器在 125°C 以上时表现出明显的频率与温度依赖性,而 CTE 不匹配引起的应力会产生额外的频率扰动。除了高温之外,许多此类应用还会使振荡器受到极端冲击和振动。Microchip 的设计和工艺工程师团队已经开发出专有解决方案来应对这些挑战,从原始石英的加工开始,到电子设计,再到整个组装所需的封装和互连技术。
本研究的目的是分析电池储能系统 (BESS) 如何支持包含水力发电厂的孤岛微电网的频率和电压稳定性。对位于瑞典的两个不同的微电网进行了评估。在 PowerFactory 工具中进行建模和动态模拟。结果表明,使用 BESS 可以改善频率和电压控制。但是,在允许的 ± 1 Hz 限制下,并非所有包括 BESS 的模拟场景都符合要求。BESS 和发电机容量之间的巨大差异可能是造成这种情况的原因。通过划分较大的负载以获得较小的负载,可以减少频率偏差。此外,通过根据孤岛模式操作调整系统 PID 参数,可以实现更快的调节。该系统根据主从控制策略运行,水力发电是具有电压控制的主单元,BESS 是具有 PQ 控制的从单元。运行孤岛微电网的能力可以确保向居民和社会的重要功能提供电力。通过利用 BESS 提高电力稳定性,间接减少了 CO 2 的排放。由于 BESS 的成本预计将迅速下降,因此它们将在世界各地得到利用。
RNA 聚合酶 II (RNAPII) 转录是一个动态过程,延伸率经常变化。然而,RNAPII 延伸动力学变化的生理相关性仍不清楚。我们在此表明,在酵母中,降低转录延伸率的 RNAPII 突变体会导致替代性多聚腺苷酸化 (APA) 发生广泛变化。我们揭示了 APA 影响慢突变体中基因表达的两种机制:3 ′ UTR 缩短和上游干扰非编码 RNA 的过早转录终止导致的基因去抑制。令人惊讶的是,受这些机制影响的基因富含涉及磷酸盐吸收和嘌呤合成的功能,这些过程对于维持细胞内核苷酸池至关重要。由于核苷酸浓度调节转录延伸,我们的研究结果表明 RNAPII 是核苷酸可用性的传感器,并且对核苷酸池维持很重要的基因已采用响应降低转录延伸率的调节机制。
本文讨论了一种使用分数阶 PID 控制器的微电网系统控制频率方案。所提出的微电网系统由光伏系统、风力涡轮发电机、柴油发电机、燃料电池和不同的存储系统(如电池储能系统和飞轮储能系统)组成。本文的主要目标是通过应用所提出的控制器来限制频率和功率偏差,该控制器有五个参数需要通过优化技术确定。Krill Herd 算法用于使用平方误差积分确定最佳分数阶 PID 控制器参数。对遗传算法和 Krill Herd 进行了比较,得到的模拟结果表明,所研究的基于控制器的 Krill Herd 在功率和频率偏差波动较少方面优于遗传算法。
摘要:全球可再生能源发电整合的增加给能源系统带来了一些挑战。能源系统需要按照电网规范进行监管,以确保电网稳定和可再生能源利用效率。主动侧的主要问题可能是由于发电量过大或发电量不受监管,例如部分阴天。负载侧的主要问题可能是由于能源需求过大或不受监管或非线性负载导致能源网络的电能质量下降。本研究侧重于发电侧的有功功率控制。在本研究中,研究和分析了超级电容器在混合存储系统中使用的好处。本研究提出了一种混合系统,其中光伏供电并将能量存储在电池和超级电容器中,以解决两个方面的主要问题。超级电容器模型、光伏模型和所提出的混合系统是在 MATLAB/Simulink 中设计的,额定功率为 6 kW。此外,还提出了一种新的拓扑结构,以增加被动存储系统中超级电容器的能量存储。该拓扑旨在将瞬时峰值电流能量暂时存储在超级电容器中。该拓扑的主要优点是超级电容器在两侧实现电压稳定,并限制电池负载,这直接延长了电池寿命并降低了系统成本。研究了该拓扑的仿真结果。
