摘要................................................................................................................ i 致谢................................................................................................................... iii 图表列表.............................................................................................................. vii 表格列表.............................................................................................................. ix 公式列表...................................................................................................... xi 缩写列表...................................................................................................... xiii 1 简介......................................................................................................................... 1 1.1 PHM 背景 ............................................................................................. 1 1.1.1 PHM 定义 ...................................................................................... 1 1.1.2 PHM 功能 ...................................................................................... 1 1.2 PHM 优势 ............................................................................................. 2 1.3 PHM 架构 ............................................................................................. 3 1.4 飞机燃油系统和 PHM ............................................................................. 3 1.5 问题陈述 .............................................................................
n 个原始系统的副本。通过假设主要鞍形几何具有 -对称性,可以取商并返回原始几何,直到固定点处的圆锥奇点。它有助于分区函数。可以进行解析延续并得到 RT 公式。
① 参见王行愚 、 金晶 、 张宇等 :《 脑控 : 基于脑 — 机接口的人机融合控制 》, 载 《 自动化学报 》2013 年第 3 期 , 第 208-221 页 。
对于眼科,对于传统的基于被动扩散的药物干预,仍然存在许多不确定性和挑战。主要障碍之一是由复杂的玻璃体体和内部生物学大分子引起的有限渗透。在这里,我们第一次证明了新型TiO 2 @N-AU纳米线(NW)电动机/机车机器人由无线自然可见光诱导的动作可以自主,有效地通过光电粒的机制自动渗透到玻璃体体内。具有效率的推进,以及与玻璃体网络的空隙相匹配的NW电动机的纳米级尺寸,无创深入玻璃体体,并克服非均匀的非牛顿液(剪切薄和粘弹性)。我们设想了主动可见的轻型TIO 2 @N-AU NW电动机可容纳深眼病和无线生物电子药物的巨大应用前景。©2022 Elsevier Ltd.保留所有权利。
摘要:如今,为了克服可再生能源整合带来的新挑战,成本更低、体积更小、效率更高的电源转换器正在不断发展。在此背景下,可再生能源应用中对精心设计的电源转换器的需求日益增加,以减少能源利用率并处理各种负载。本文提出了一种用于 DC-DC 转换的中心抽头桥级联串联谐振 LC 双有源桥 (DAB) 转换器。所提出的转换器的零件数量少,可以实现高功率密度设计,同时降低成本。由于采用电流阻断特性消除了反向电流,因此所提出的转换器降低了传导损耗。反向电流阻断还可以在很宽的工作范围内实现零电压开关 (ZVS) 和零电流开关 (ZCS)。因此,与传统的 DAB 转换器相比,使用简单的固定频率调制 (FFM) 方案可提供更宽的工作范围。基于传导损耗和开关损耗对所提出的转换器和传统的 DAB 转换器进行了全面比较,以说明性能改进。最后,通过仿真和实验结果验证了所提出的转换器的有效性。
摘要 — 要获得可重构智能表面 (RIS) 的好处,通常需要信道状态信息 (CSI)。然而,RIS 系统中的 CSI 获取具有挑战性,并且通常会导致非常大的导频开销,尤其是在非结构化信道环境中。因此,RIS 信道估计问题引起了广泛关注,并且近年来也成为热门研究课题。在本文中,我们针对一般非结构化信道模型提出了一种决策导向 RIS 信道估计框架。所采用的 RIS 包含一些可以同时反射和感知传入信号的混合元素。我们表明,借助混合 RIS 元素,可以准确恢复导频开销与用户数量成比例的 CSI。因此,与采用无源 RIS 阵列的系统相比,所提出的框架大大提高了系统频谱效率,因为无源 RIS 系统中的导频开销与 RIS 元素数量乘以用户数量成正比。我们还对导频导向和决策导向框架进行了详细的频谱效率分析。我们的分析考虑了 RIS 和 BS 的信道估计和数据检测误差。最后,我们给出了大量模拟结果来验证分析的准确性,并展示了所提出的决策导向框架的优势。
摘要 高维希尔伯特空间以及控制光子多个自由度并使其纠缠的能力使得各种量子信息处理应用能够实现新的量子协议。在这里,我们提出了一种方案,使用在路径(位置)空间和频域中实现偏振控制量子行走所需的操作元件来生成和控制偏振-路径-频率纠缠。超纠缠态表现为使用干涉装置的受控动力学,其中半波片、分束器和频率移位器(例如基于电光效应的移位器)分别用于操纵偏振、路径和频率自由度。重点是利用偏振来影响频率和位置空间中特定值的移动。计算子空间之间的负性以证明三个自由度之间纠缠的可控性,并使用去偏振通道模拟噪声对纠缠的影响。报告的进展以及使用光量子态实现量子行走的实验演示使量子行走成为一种生成超纠缠态的实用方法。
无线专业套件由一个或多个插入主板的主板和无线电板组成。可用的无线电板,每个无线电板都有不同的硅实验室设备,具有不同的操作频段。由于主板设计用于使用不同的无线电板,因此在无线电板上完成了从设备引脚到主板功能的实际引脚映射。这意味着每个无线电板都有自己的销钉映射到无线专业套件功能,例如按钮,LED,显示器,EXP标头和突破垫。由于每个无线电板的销映射都不同,因此请咨询正确的文档很重要,该文档显示了插入的无线电板的套件功能。
脐尿管源自胚胎尿囊,是胎儿期连接膀胱和脐带的管道。随后,脐尿管最终退化形成称为脐正中韧带的纤维肌索。如果脐尿管无法退化,则可能导致脐尿管异常增生,甚至导致恶性肿瘤。脐尿管癌 (UrC) 是一种罕见但具有侵袭性的恶性肿瘤,占所有膀胱癌的不到 1% (Bruins et al., 2012) 。脐尿管癌在早期通常无症状,约一半的患者需要系统性化疗来延长生存期 (Szarvas et al., 2016)。然而,只有有限数量的晚期疾病患者对传统化疗有反应,而且目前还没有足够有力的研究来证实这些益处 ( Loizzo 等人,2022 年)。在其他类型的癌症中,包括结直肠癌 (CRC),靶向治疗对具有特定分子标记表达的患者显示出显着的疗效 ( Joo 等人,2013 年)。这些令人鼓舞的结果引起了研究人员对 UrC 精准治疗的浓厚兴趣。近年来,一些临床系列研究了 UrC 患者的基因组改变,并在靶向治疗方面获得了有希望的发现。因此,在本综述中,我们全面讨论了 UrC 的分子谱,并进一步确定了个性化治疗 UrC 的潜在靶点。此外,考虑到免疫检查点抑制剂的临床可能性,我们还讨论了几种免疫治疗的生物标志物。