KS Sangwan 教授,皮拉尼校区 MS Dasgupta 教授,皮拉尼校区 Abhijeet K. Digalwar 教授,皮拉尼校区 Bijay K. Rout 教授,皮拉尼校区 Manoj Soni 教授,皮拉尼校区 Rajesh P Mishra 教授,皮拉尼校区 Dhananjay Madhukar Kulkarni 教授,果阿校区 教授Pravin Madanrao Singru,果阿校区 Shibu Clement 教授,果阿校区 R. Karthikeyan 教授,迪拜校区 Amit Kumar Gupta 教授,海得拉巴校区 Jeevan Jaidi 教授,海得拉巴校区 Morapakala Srinivas 教授,海得拉巴校区 N Suresh Kumar Reddy 教授,海得拉巴校区 Sandip S. Deshmukh 教授,海得拉巴校区 Srinivasa 教授Prakash Regalla,海得拉巴校区 YV Daseswara Rao 教授,海得拉巴校区 NVM Rao 教授,Pilani 校区 Shamsher Bahadur Singh 教授,Pilani 校区 Ajit Pratap Singh 教授,Pilani 校区 Annapoorna Gopal 教授,Pilani 校区 Arya Kumar 教授,Pilani 校区 PB 教授Venkataraman,皮拉尼校区 Srikanth Mutnuri 教授,果阿校区 D. Sriram 教授,海得拉巴校区 Sanket Goel 教授,海得拉巴校区 S Gurunarayanan 教授,海得拉巴校区 Venkata Vamsi Krishna Venuganti 教授,海得拉巴校区 Bhausaheb Botre 博士,CSIR - CEERI,皮拉尼 Udit Narayan Pal 博士,CSIR - CEERI,皮拉尼
● 由于需要升级健康和安全措施(例如维修屋顶、消除霉菌和石棉或升级电气系统),大量低收入独户和多户家庭选择放弃太阳能;● 低收入家庭缺乏低成本、易于获得的融资,以及他们希望通过太阳能创造长期财富积累机会;● 极端天气/停电期间,最脆弱人群面临的可靠性和弹性风险;● 对达到项目容量的低收入社区太阳能项目的需求很高;● 社区驱动的社区太阳能项目面临与国家开发商竞争的挑战;● 开发商难以编织和协调不同的资金流;● 小型 DBE 难以获得资本并扩展到现金业务之外;● 零售电力供应市场十多年来一直存在不良行为,导致市场缺乏信任。
在使用我们的 Smart Cut 技术生产 SiC 基板时,我们发现优化键合步骤对于实现高水平的电导率和热导率至关重要。我们的研究表明,键合界面对总基板电阻的贡献相当于标准 SiC 材料的几十微米。在 Smart Cut 将薄片 SiC 从供体基板分割并转移到载体基板后,我们采用了精加工工艺,以确保通过抛光和退火,我们新形成的基板已准备好进行外延处理并与 SiC 器件加工兼容。请注意,我们的 Smart Cut SiC 技术生产的晶圆顶层没有基面位错(见图 2 和 3)。
2025 年 1 月 24 日 简介 《联邦清洁水法》第 303(d)(1)(A) 条规定,各州必须为需要开发总最大日负荷 (TMDL) 的水道制定优先级排序。该优先级排序必须包括损害的原因,并考虑污染的严重程度和水体的用途。本文件包含宾夕法尼亚州对美国环境保护署 (USEPA) TMDL 计划 2022-2032 愿景的优先级排序理由。根据 40 CFR 130.7(b)(4),这一原理将有助于指导在宾夕法尼亚州选择特定水体进行 TMDL 开发,以两年为周期,从 2024 年 10 月 1 日开始,用于美国环保署 2022-2032 愿景的剩余部分。除了 TMDL,此优先级排序还设想在适当的情况下使用其他类型的修复计划,包括下文所述的提前修复计划 (ARP) 和保护计划。虽然这种优先级策略有助于以有组织和周到的方式规划未来工作,但它并不意味着严格限制此时间范围内的项目,因为可能会出现不可预见的需求和机会。高效 TMDL 开发的一个关键实际考虑是开发特定污染物/用途组合的方法所需的大量资源投入。例如,用于开发因淤积而导致的水生生物使用障碍的 TMDL 的方法可能与用于解决因病原体导致的娱乐使用障碍的数据和方法大不相同。为了最大限度地提高项目资源的有效利用,明智的做法是一次关注一种特定的污染物/用途组合,并在将重点转向其他污染物/用途组合之前制定许多类似的 TMDL。因此,宾夕法尼亚州环境保护局 (DEP) 正在根据本美国环境保护署愿景周期的目标污染物/用途组合简短列表组织此拟议优先级排名。指定用途和令人关注的污染物对宾夕法尼亚州 2022 年综合水质报告最终版和 2024 年综合水质报告草案的审查显示,水生生物用途的损害最为常见,其次是娱乐用途的损害。相比之下,鱼类消费和供水用途的损害则不那么常见。在水生生物用途类别中,淤积损害最为常见,其次是金属、pH 值和营养物损害。病原体/大肠杆菌 (E. coli) 是娱乐用途类别中唯一列出的污染物原因。下面进一步讨论在未来几年内对 TMDL/ARP 开发中每种污染物进行优先排序的理由。
开发了太阳能移动电池掉期充电站(MBSCS)作为环保的充电站替代雷尼·罗恰尼(Renny Rochani)* 1,wahyudi sutopo 2&satrio fachri chaniago Chaniago 3于2023年12月4日收到;修订了2024年2月20日; 2024年3月4日接受; ©伊朗科学技术大学2024摘要电动摩托车(EM)是对环保车辆的有前途的解决方案,但由于用于充电和有限的充电基础设施的基于化石的能量而造成了一些困境。本文提议通过设计一个由太阳能移动电池交换站(MBSC)来解决这些困境,以解决EM基础架构。MBSC将将太阳能发电厂作为可持续能源集成,并使用电池换成系统来容纳EM。设计思维方法学用于通过与专家小组成员的焦点小组讨论来开发MBSC和技术指标评估的初始设计。使用PVSYST软件进行模拟,以评估根据所选组件定义的各种系统变体。这项研究的结果提供了MBSC的初始设计,评估MBSCS系统的技术指标,仿真结果和最佳系统变体配置。这项研究的发现将主要有助于解决EM挑战的解决方案,并提供环保的充电基础设施。这项研究有望作为旨在回答有限充电基础设施的未来移动充电站的替代解决方案,并证明了便携式太阳能发电厂的潜在使用来克服对基于化石的能源的依赖。关键字:电池交换系统;设计思维;电摩托车;专家判断;移动充电站。
摘要全球供应链的快速扩张导致碳排放和环境问题增加,因此需要采用可持续物流解决方案。本研究探讨了人工智能(AI)在优化运输路线,最大程度地减少燃油消耗和减少供应链的碳足迹方面的作用。AI驱动的路线优化整合了实时交通数据,天气状况和车辆效率,以增强最后一英里的交付和货运管理。机器学习算法进一步有助于预测性维护,机队电气化策略和需求预测,从而确保运营可持续性。这项研究还研究了绿色物流实践,包括使用电力和氢能车辆,多模式运输网络以及循环经济模型,以最大程度地减少环境影响。支持区块链的碳跟踪和AI驱动的可持续性指标可提高碳足迹报告的透明度。此外,该研究强调了监管框架和行业倡议,促进了低排放运输和智能物流中心。的发现表明,AI驱动的物流解决方案可以在实现可持续性目标的同时显着提高效率。但是,必须解决诸如高实施成本,数据隐私问题和基础设施限制之类的挑战。未来的研究应着重于将AI与物联网和区块链整合在一起,以增强可持续供应链中的可追溯性和决策。AI驱动系统提供变革功能该研究得出结论,AI驱动的绿色物流可以彻底改变运输,从而为碳中性和成本效益的全球供应链提供可行的道路。关键字:绿色物流,AI路线优化,可持续运输,减少碳足迹,供应链可持续性和环保物流。引言近几十年来,全球供应链的前所未有的增长彻底改变了贸易,商业和工业。但是,这种快速扩张的环境成本很高,碳排放量增加,资源过多和生态退化的提高。货运运输仅负责全球温室气体(GHG)排放的很大比例[1],并且随着电子商务,城市化和国际贸易的持续增长,这些数字预计将攀升。这种日益增长的环境影响刺激了对可持续物流解决方案的需求,全世界的企业和政府都在寻求创新的方法,以减少碳足迹,同时保持运营效率。推动这一转变的最有希望的进步是将人工智能(AI)整合到物流和供应链管理中。
通过将这些混合物的重复湿干循环(模仿地球早期的环境波动的条件)进行,这项研究确定了三个关键发现:化学系统可以在不达到平衡的情况下连续发展,避免通过选择性化学途径进行不受控制的复杂性,并表现出同步的人群在不同分子中的同步人群动态。
沿海地区在这项研究中表现出更强的非洲混合物,而北部也门也门地区的北部地区表明与阿拉伯和黎凡特有更紧密的遗传关系。在也门漫长而持续的内战中,这项研究发现,沿海和内陆分裂的历史基因组起源不同,这与当前冲突的划分线相处。
• 无舱底 • 水线以下没有任何东西 • 正浮式船体(不会沉没) • 减少曲面以减少建造和维护时间 • 直线和直角内饰,可使用标准化组件和电器 • 免维护 HDPE 船体涂层 • 用螺栓固定橱柜、家具、固定装置,可快速重新配置和灵活布置内部空间 • 无舱口。 • 无固定索具(风筝风力发电选项) • 垂直双面太阳能电池板 • 倒置窗户,无泄漏。 • 明轮。水线以上通道和维护。带再生功能的电力驱动。 • 无杂散电压。许多新型碳纤维船都存在很多杂散电压问题。
本文报道了一种环保的锂对苯二甲酸/聚乳酸 (Li 2 TP/PLA) 复合细丝的开发,该细丝通过熔融沉积成型 (FDM) 进行 3D 打印后可用作锂离子电池的负极。通过在挤出机内直接引入合成的 Li 2 TP 颗粒和 PLA 聚合物粉末,实现了 3D 可打印细丝的无溶剂配方。通过加入平均 M n ∼ 500 的聚乙二醇二甲醚 (PEGDME500) 作为增塑剂,提高了可打印性,而通过引入炭黑 (CB) 则提高了电性能。彻底讨论了热、电、形态、电化学和可打印性特性。通过利用 3D 打印切片软件功能,提出了一种创新方法来改善 3D 打印电极内的液体电解质浸渍。© 2021 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款发布(CC BY,http://creativecommons.org/licenses/ by/4.0/),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当引用。[DOI:10.1149/ 2162-8777/abedd4]