光化学环加成和环化反应为在各种(张力)环系统中构建碳-碳和碳-杂原子键提供了强大的合成工具,因此在合成复杂的生物活性化合物和新材料方面发挥了重要作用。然而,使用紫外线照射来促进这些过程的传统方法通常会受到竞争性和不可控的副反应的影响,从而限制了它们广泛的合成适用性。考虑到这一点,这些反应是使用能量转移 (EnT) 催化和流动化学开发温和可见光介导策略的理想目标。同时,仍然需要进行详细的筛选以处理复杂的 EnT 光催化剂设计、反应优化和光环加成过程的放大。
都柏林 2,爱尔兰 电子邮件:connons@tcd.ie,iamartin@tcd.ie 吖内酯是环化氨基酸衍生物,在手性催化剂存在下可以进行动态动力学拆分。1 过去三十年来,它们一直受到有机化学家的极大关注,因为它们具有大量可能的转化;包括对映选择性开环反应。与此过程相关的一个关键限制是缺乏非醇衍生的亲核试剂;对映选择性硫解 2 和氨解 3 是理想的,但目前范围有限。该项目旨在通过间接氨解外消旋吖内酯来开发一种可重复和对映选择性的肽连接。这将成为肽化学家合成对映体富集的非天然氨基酸的有用资源。为此,使用胺亲核试剂取代苯酚酯中间体以避免直接非选择性加成的问题,并且开发了一类新型、高度可改性的金鸡纳衍生离子对催化剂。
a)MTT-Cleavage:2%TFA/DCM; b)fmoc-aaa(x)-OH耦合; c)FMOC-裂解2%哌啶/2%DBU/DMF,0.1 m HOBT; d)从树脂裂解2.5%TIS/ 2.5%H 2 O/ 95%TFA(RT,3 h); e)盐交换pyr.hcl 10 eq/meoh(1 h); F)环化:BOP 3EQ/HOBT 3EQ/DIPEA 6EQ/DMF(C = 0.5 mg/ml,RT,24 h); g)氨基乙酸脱身0.2 M NH 4 OAC溶液(pH 5.0)/1 M甲氧基胺(RT,1 H); h)在0.2 m NH 4 OAC溶液中(pH 5.0)中的daunorubicin结合(RT,24 h); i)FMOC-裂解4%氢氮/DMF(RT,2 h)。图2:环状kngre(a)和Xngre(b)药物的合成的示意图。
与各种亲电伙伴进行环加成反应,5 Zhao 等人和 Glorius 等人独立报道了[5 + 4] 环加成反应,以合成不同大小的高度功能化的环。6a、b Glorius 等人随后通过协同 N-杂环卡宾有机催化和钯催化,实现了乙烯基碳酸亚乙酯与烯醛的首次对映选择性[5 + 2] 环化反应,6c 而 Liang 等人报道了配体控制的乙烯基碳酸亚乙酯与萘酚之间的[3 + 2] 和[3 + 3] 环加成反应。7 尽管进行了这些广泛的研究,但我们不知道有关乙烯基碳酸亚乙酯[4 + n] 环加成反应的报道。 [4 + n] 环加成反应,尤其是 [4 + 2] 环加成反应,在合成有机化学中起着关键作用,因为它们可以快速生成具有挑战性但具有合成价值的环状化合物
此类反应的立体控制已被积极研究,最典型的研究重点是 C=C 键两侧的立体分化(方案 1A)。[2] 碳(亲)亲核试剂,如 1,3-二羰基,也参与核钯化,尽管此类反应研究较少。1965 年,Tsuji 描述了 1,5-环辛二烯与二甲基丙二酸钠的计量碳钯化的早期例子。Holton 和 Hegedus 后来证明了计量碳钯化的合成效用。[3] 21 世纪初,Widenhoefer 报道了一系列关于 1,3-二羰基部分和烯烃的分子内氧化还原中性环化的开创性研究。[4] 2016 年,我们的实验室描述了非共轭烯烃与各种碳(亲)亲核试剂的底物导向烃功能化。 [5] 何立、彭立和陈立最近发现了一种单齿手性噁唑啉配体,可以使这种转化对内部烯烃具有对映选择性。[6]
摘要:尽管该领域取得了开创性的进展,但由于药物过早释放到血液中以及生物分布不良,药物安全性和有效性仍然是一个问题。为了克服这些限制,我们报告了基于动态共价键的药物环化,以设计小分子抗癌药物喜树碱 (CPT) 的双重锁定。药物活性被氧化还原响应的二硫化物和 pH 响应的硼酸-水杨基羟肟酸酯“锁定”在环状结构中,并且仅在酸性 pH、活性氧和谷胱甘肽存在下通过无痕释放开启。值得注意的是,双重响应的 CPT 比不可裂解(永久闭合)类似物活性更高(100 倍)。我们进一步在主链中加入了生物正交手柄,用于功能化生成环状锁定、细胞靶向的肽和蛋白质 CPT,用于药物的靶向递送和在三阴性转移性乳腺癌细胞中的无痕释放,以在低纳摩尔浓度下抑制细胞生长。
作为抗体-药物偶联物的新替代品,我们生成了“配体靶向”肽-药物偶联物 (PDC),它利用受体介导的内吞作用进行靶向细胞内药物递送。PDC 与细胞外配体形成复合物,然后与细胞表面的受体结合,通过内吞途径刺激细胞内摄取。螺旋-环-螺旋 (HLH) 肽被设计为药物载体,并随机化以得到构象受限的肽库。噬菌体展示库针对血管内皮生长因子 (VEGF) 进行筛选,以产生结合肽 M49,其表现出强结合亲和力 (KD = 0.87 nM)。共聚焦荧光显微镜显示肽M49与VEGF及其受体形成三元复合物,然后通过VEGF受体介导的内吞作用被内化到人脐静脉内皮细胞(HUVEC)中。骨架环化的肽M49K与药物单甲基奥瑞他汀E结合,得到PDC,其抑制VEGF诱导的HUVEC增殖。HLH肽及其PDC具有作为靶向分子治疗新方式的巨大潜力。
使用基于OW的反应器来优化Suzuki - Miyaura耦合(3个连续变量,一个分类)和C - H激活(5个连续变量)通过5 - 22实验中的多任务BO进行,从而降低了与常规优化技术相比,R&D成本降低了R&D的成本。在一项不同的研究中,使用BO技术来提高基于4个输入控制变量(例如居住时间,等效量和温度)参数的自动连续OW平台,在OW系统中的HECK环化34个34的产量。作者能够在仅14小时(13个总实验)中实现81%的产量,并发现了有利的竞争途径。这样的ndings强调了BO在不同的研发方案中的多功能性和效力。将BO方法纳入研发方法的一个主要挑战是,这些方法通常被视为具有有限的解释性和可解释性的黑匣子,35妨碍了他们广泛采用。此外,当搜索空间很大时,研究人员在可视化和
利用工程酶进行催化为活性药物的生产提供了更有效的途径。然而,生物催化在早期药物发现活动中的潜力仍未得到充分开发。在这项研究中,我们开发了一种生物催化策略,通过苯并噻吩和相关杂环的分子内环丙烷化来构建富含 sp 3 的多环化合物。我们进化出了两种具有互补区域异构体选择性的卡宾转移酶,以催化在杂环的 C2 或 C3 位上带有重氮酯基的苯并噻吩底物的立体选择性环化。我们通过结合晶体学和计算分析阐明了这些反应的详细机制。利用这些见解,可以将其中一种生物催化剂的底物范围扩大到包括以前不反应的底物,这凸显了整合进化和理性策略来开发用于新自然转化的酶的价值。这里获得的分子支架具有三维和立体化学复杂性以及“三元律”特性的组合,这使得它们对于基于片段的药物发现活动具有很高的价值。
1 土耳其科尼亚塞尔丘克大学药学院药物化学系 * 通讯作者电子邮件:kucukogluk35@hotmail.com 要点 人类谷氨酰胺环化酶 (hQC) 有两种同工型,即分泌型 QC (也称为 sQC) 和高尔基定位型 QC (也称为 isoQC 或 gQC)。 hQC 通过释放氨或水介导 N 端谷氨酰胺或谷氨酸残基的环化。 在某些疾病中,QC 的分泌水平会增加,例如阿尔茨海默氏症 (AD)、亨廷顿氏病 (HD)、黑色素瘤、甲状腺癌、动脉粥样硬化的快速形成、化脓性关节炎。 近年来,发现抑制 QC 的新药被认为是预防和治疗许多生理问题和疾病的重要方法。 已发现具有咪唑骨架的化合物具有抑制 QC 的潜力。这些药物中最引人注目的一种是瓦罗谷氨酸司他,目前正处于阶段研究中。 ARTICLEINFO 收稿日期:2022 年 5 月 21 日 接受日期:2022 年 6 月 25 日 发表日期:2022 年 7 月 15 日 关键词:阿尔茨海默氏症淀粉样蛋白β谷氨酰胺环化酶焦谷氨酸修饰瓦罗谷氨酸司他