“我们的发现表明,先前关于AMOC削弱的研究最有可能低估了经济影响,” Schaumann说。在全球范围内,气候变化的加速会产生更频繁和极端的天气事件,例如热浪,干旱和洪水,从而导致碳的社会成本增加。这一成本代表了由额外的批量排放造成的损害,而碳的社会成本的增加可以抵消AMOC较弱的冷却的经济利益。
检测从Terahertz到可见光谱结构域的光脉冲的电场波形提供了平均场波形的完整特征,并具有量子光学的巨大潜力,时间域(包括频率bomb)光谱镜,高谐波,高谐波,高旋转性生成和Attosecond Science,可举几例。可以使用电磁抽样进行场分辨的测量,其中激光脉冲通过与另一个较短持续时间的另一个脉冲的相互作用来表征。测得的脉冲序列必须由相同的脉冲组成,包括其相等的载体 - eNvelope相(CEP)。由于宽带激光增益介质的覆盖率有限,在中红外创建CEP稳定的脉冲序列通常需要非线性频率转换,例如差异频率产生,光学参数放大或光学整流。这些技术以单次通道的几何形状运行,通常会限制效率。在这项工作中,我们展示了对谐振系统(光学参数振荡器(OPO))中产生的脉冲的现场分解分析。由于固有的反馈,该设备在给定的输入功率水平上表现出相对较高的转换效率。通过电磁抽样,我们证明了用CEP稳定的几个周期纤维激光脉冲泵送的亚谐波OPO会产生CEP稳定的中红外输出。完整的振幅和相信息使色散控制直接控制。我们还直接在时间域中直接确认了Opo的外来“翻转”状态,在时域中,连续脉冲的电场具有相反的符号。
经常使用极性聚乙烯(PE)引入极性基团,以增加PES极性以实现,例如与其他极性材料的兼容性。这可以通过聚合后的修饰或直接通过乙烯基单体(如丙烯酸酯,乙烯基酮或其他)共聚来实现。1-7后来的方法产生侧链官能团。通过比较,聚乙烯链生长过程中一氧化碳掺入可以提供链内酮基团。除其他外,少量此类酮单元可以以理想的光降解性赋予材料,以减少不雄厚的聚乙烯废物的有问题的环境持续性。8可以长期以来一直在乙烯聚合过程中掺入少量的一氧化碳,从而访问与链型酮单元(酮)的线性HDPE型聚乙烯(酮),因为通常由于乙烯-CO共聚的结果而在乙烯聚合过程中长期存在,因为乙烯-CO共聚的结果是在交替的多酮中,因此由于合成了二氧化碳的偏好。9,10此类酮PE材料仅通过非替代共聚11-13才通过晚期磷酸苯酚14-20 Ni(II)配合物催化。由于它们的高分子量(高达M W 400.000 g mol -1; m n 200.000 g mol -1),这些聚合物是可以加工的,并且在其机械性能中具有与商业高密度聚乙烯(HDPE)的机械性能相同。188同时,这些材料由掺入的链内羰基提供了光降解。11,18
通过使用 SmartSiC™ 基板,无欧姆退火 SiC 功率器件的功率循环可靠性已得到验证 通过使用 SmartSiC™ 基板,无欧姆退火 SiC 功率器件的功率循环可靠性已得到验证 通过使用 SmartSiC™ 基板,无欧姆退火 SiC 功率器件的功率循环可靠性已得到验证 通过使用 SmartSiC™ 基板,无欧姆退火 SiC 功率器件的功率循环可靠性已得到验证 通过使用 SmartSiC™ 基板,无欧姆退火 SiC 功率器件的功率循环可靠性已得到验证 通过使用 SmartSiC™ 基板,无欧姆退火 SiC 功率器件的功率循环可靠性已得到验证
睡眠已被证明对认知功能,心理健康和身体健康有明确的影响[24,28,41]。我们需要睡眠来进行日常活动,维持体内平衡和身体功能,并最终活着。被认为是健康的睡眠习惯是生活的重要方面[48]。然而,在全球范围内,关于睡眠不佳的健康问题越来越普遍[50,53]。当代技术解决方案已部署,以解决睡眠不足的问题,在很大程度上采用了睡眠跟踪设备和应用程序的形式[36],这些形式受到了巨大的用户挑战。这些因素在提供输入,间歇性使用而导致生活方式因素或用户在解释数据如何告诉他们如何改善睡眠方面面临困难的用户,因此在跟踪中包括不连续性[37]。同样,尽管了解睡眠的交互式技术的设计取得了一些进展 - 例如,使用虚拟现实来指导用户睡眠或训练睡眠技巧,例如Lucid Dreaming [32,57] - 这种方法还引入了自己的缺点,包括有可能与技术中断睡眠开始与技术相互作用。同时,最近的神经科学作品探索了神经刺激范式,以诱导睡眠有利的脑活动,以改善睡眠健康等方面,例如睡眠质量和效率。例如,研究证明了经颅电刺激(TES)对睡眠和人们整体健康的积极影响[26,66]。Zhou及其同事专注于听觉刺激,特别是粉红色噪声,以调节大脑活动,以改善睡眠稳定性[65]。此外,应用神经刺激以改善睡眠的研究发现,具有特定身体节奏的战略性刺激,例如睡眠周期中的某些阶段,提高了刺激的功效[47]。这些作品涉及对特定刺激范式的受控实验室研究及其对神经动力学的影响,通常用于临床应用。这些技术在改善睡眠健康方面的功效突出了它们在交互式技术中纳入的潜力,可以改善非临床环境中的一般睡眠健康。考虑到了这一考虑,我们看到了将新颖的相互作用范式结合起来的机会,在HCI中越来越普遍,例如生物传感,以及当代的睡眠神经刺激技术在神经科学研究中鉴定出来。我们旨在将这些开发项目融合在一起,以探索闭环的可穿戴设备(可以在偶发方面具有意义并促使穿着者的生理学的系统)[39]可以在实验室外进行睡眠刺激。我们通过设计和研究一种称为“推土机”的新型系统的设计和研究,这是一种闭环可穿戴,可通过听觉和大脑刺激在发现脑电图中的嗜睡后通过听觉和电脑刺激加速睡眠。在本文中,我们详细介绍了推土机的设计和评估,我们通过一项涉及11名参与者的野外研究进行了评估,他们被指示在日常生活中使用原型。通过对参与者访谈的主题分析,我们发现了三个UX主题:闭环神经代理机构,对硬件的意识和对
[Yadav等。al,nat。公社。8,14424(2017); J.mater。化学。A 5,15845(2017);母校。能源6,198(2017);他们。J.能源氢43,8480(2018); Gallaway等。al。,J。Electrochem。Soc。165,A2935(2018)]165,A2935(2018)]
无铅锡基焊点通常具有单晶粒结构,取向随机,且特性高度各向异性。这些合金通常比铅基焊料更硬,因此在热循环期间会向印刷电路板 (PCB) 传递更多的应力。这可能会导致靠近焊点的 PCB 层压板开裂,从而提高 PCB 的柔韧性,减轻焊点的应变,进而延长焊料疲劳寿命。如果在加速热循环期间发生这种情况,可能会导致高估现场条件下焊点的寿命。在本研究中,使用偏光显微镜研究了连接陶瓷电阻器和 PCB 的 SAC305 焊点的晶粒结构,发现其大多为单晶粒。热循环后,在焊点下的 PCB 中观察到裂纹。这些裂纹很可能是在热循环的早期阶段在焊料损坏之前形成的。为了详细研究这些观察结果,我们开发了一种有限元模型,该模型结合了单晶焊点随温度变化的各向异性热性能和机械性能。该模型能够以合理的精度预测 PCB 和陶瓷电阻焊点中损伤起始的位置。它还表明,即使长度非常小的 PCB 裂纹也可能显著降低焊点中累积的蠕变应变和蠕变功。所提出的模型还能够评估焊料各向异性对陶瓷电阻相邻(相对)焊点损伤演变的影响。