1977 年至 1990 年,Walden 与墨西哥飞艇制造公司 SPACIAL S.A. 的创始人 Mario Sánchez-Roldan 合作,设计和开发了一系列采用透镜状刚性测地线空间框架船体的飞艇。合作成果包括小尺寸 XEM-4 刚性透镜状飞艇演示器和全尺寸 SPACIAL MLA-32-B,后者于 1989 年 6 月首次飞行,成为 50 年来第一艘现代载人刚性飞艇。此次合作还验证了 Walden 的测地线船体设计规范,该规范用于 LTAS 飞艇设计。1997 年,该公司获得了第一批投资者,公司名称更改为 LTAS / CAMBOT LLC,以反映他们开发远程控制高空平台 (HAP)(称为 CAMBOT)的计划。Robert Ellingwood 成为该公司的总裁。2003 年,该公司更名为 LTAS Holdings LLC 和 LTAS International LLC (LTASI)。LTAS Holdings 是 Michael Walden 专利的受让人,并授权使用该知识产权 (IP)。LTASI 是 IP 应用的被许可人。此外,2003 年,一群外国投资者提供资金开发和建造大型 DCB 原型飞艇,最初打算将其作为 30-XB / 技术演示器,并被简单地指定为 TD1,后来被指定为 TD2。Michael Walden 于 2005 年离开 LTAS Holdings 和 LTASI。当时,LTAS 公司计划开发基于 TD2 设计的 New Frontier DCB 飞艇系列。这些公司于
环形石墨烯(TG)代表了一类新的碳纳米结构,将曲率驱动的场限制与量子增强电荷相干性集成在一起。与常规的基于碳的增强剂不同,TG表现出源自无折叠的实验和理论证据链的3×10 9的电磁场扩增因子(AF)。曲率诱导的定位和等离子体杂交理论(PHT)的协同作用使van der waals(VDW)在青铜基质中的膨胀从0.4 nm到577 nm,从而使超高的TG浓度仅为0.005 wt%,以驱动机械性能的转化增强。将其纳入无铅铜制时,TG将耐磨性提高458%,并使CO₂排放量减少78.2%,从而提供了史无前例的性能和可持续性组合。这些作用源于量子等离子体加固机制,这些机制改善了纳米级的应力转移,负载分布和分子内聚力。与常规合金元素(例如PB或Ni)不同,依赖于散装物质特性的PB或Ni,TG从根本上改变了通过纳米级力重新分布来改变耐药性。这项研究将TG确立为下一代金属纳米复合材料的破坏性材料,将基本纳米科学与与行业相关的摩擦学验证合并。与全球第八大卡车制造商Scania合作进行,该验证证实了其直接的工业相关性,证明了现实世界中的适用性在高性能耐磨应用中。连接电磁场放大,VDW扩展和摩擦学验证的明确证据链支持TG的量子工程增强功能,将其定位为高级制造和重型产业的基石。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年4月6日发布。 https://doi.org/10.1101/2023.04.06.535895 doi:Biorxiv Preprint
摘要 —PUF(物理不可克隆函数)已被提出作为一种经济有效的解决方案,为利用内在过程可变性的电子设备提供信任根。它们仅在设备开启时生成识别签名和密钥,避免将敏感信息存储在可能成为攻击目标的内存中。尽管 PUF 具有许多明显的优势,但它们也存在诸如对温度敏感等缺点。事实上,它们的行为可能会受到高温会加速永久性和瞬态现象(例如老化和晶体管开关速度)这一事实的影响。在本文中,我们展示了外部感应热量对环形振荡器(RO)功能的影响,而环形振荡器是 RO-PUF 的基础。此外,我们讨论了对 PUF 进行温度攻击的可行性。索引术语 —物理不可克隆函数、老化、环形振荡器、硬件安全
物理不可克隆函数 (PUF) 是一种加密原语,可作为低成本、防篡改的唯一签名和密钥生成以及设备识别机制。环形振荡器 (RO) PUF 是研究最多的 PUF 架构之一,这主要是因为它的简单性。在现代电路中广泛采用 PUF 时,可靠性起着重要作用。由于当今 PUF 的可靠性问题,其实施成本使其不适合工业应用,如 [1] 所示。这项工作的目标是定义一种基于测量的振荡频率差异来评估 RO-PUF 响应可靠性的方法。除了对挑战的响应之外,该方法还将在运行时提供响应是否可靠的信息。Maes 在 [2] 中是最早展示 PUF 可靠性和其熵之间的权衡的人之一。Schaub 等人在 [3] 中提供了一种用于延迟 PUF 的通用概率方法,其中可靠性和熵之间的权衡基于信噪比 (SNR) 建模,并通过实际测量进行验证。Martin 等人的另一项工作 [4] 提供了一种基于 FPGA 提取数据的 PO-PUF 可靠性评估指标。这里,可靠性和熵之间的权衡是根据实验数据估算的。还需要提到的是,可靠性受老化的影响很大 [5],但其影响很难研究。相比之下,我们提出了一种可以改进最先进技术的方法,因为它提供了一种基于不同环境条件下的离线研究来动态估计可靠响应的方法。
Sophie Cambronero,AurélienDupré,Charles Mastier,David Melodelima。在体内猪模型中对肝组织的非侵入性高强度的超声处理:使用环形传感器快速,大而安全的消融。医学与生物学超声波,2023,49(1),pp.212-224。10.1016/j.ultrasmedbio.2022.08.015。hal-04745052
在这些聚合物中,半晶体脂肪族聚酯(PCL)(PCL)(PCL)在从食品包装到生物医学应用的多个域中发现了应用。PCL的多功能性及其在许多工业应用中的用法主要与其固有的特征术有关,包括热(Tg¼65c和tm¼60c)和机械稳定性以及在多种聚合物(例如聚(乙烯基氯化物)或聚(双酚-A碳酸盐))。2此外,可以在适当的修饰阳离子上调整PCL的性质。例如,可以通过制备含有3个 - 可己酮和其他单体的共聚物来定制其机械性能。此外,如使用
我们通过环形梁研究表面极化子的辐射,该环形梁同轴封闭了一个圆柱形波导,该波导被均匀的介质包围。通过使用绿色二元组,电磁电位以及电磁场在波导的内部和外部。对于圆柱体内外的介电渗透率的一般情况,能量损失的表达是得出的。在与表面极化子辐射相对应的光谱范围内进行了全面分析。对于梁速度的中间值获得了光谱分布中的最高峰。在透明培养基的极限中,辐射表面极化子的光谱是离散的,相应的频率由圆柱波导的特征值方程确定。的数值示例。
亲爱的读者!在11月22日,现在是时候了:我们的研究所在Sci的漫长夜晚打开了大门。在第九次,我们想将每个人引入所有人之间迷人的化学传播世界。这一事件不仅是我们介绍有关植物,昆虫和微生物的研究的机会,而且是我们对支持我们以公共资金支持的社会的承诺的表达。研究不会在真空中进行。它与我们以积极的方式生活和呼吸的民主和世界开放的价值观紧密相关。在一个越来越多地以紧张局势为标志的世界中,需要寻找全球危机(例如全球变暖或物种灭绝)的共同答案,我们认为这是建造桥梁和促进对话的责任。